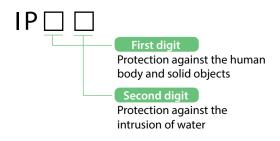


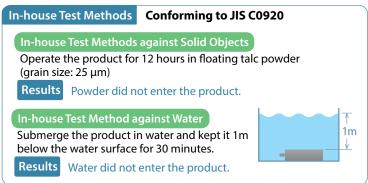
Water-proof Radial Cylinder ROBO CYLINDER® RCP4W-RA series RCP4W-RA series

тел.: (495) 662-87-56 e-mail: iai@actuator.ru

Introducing the IP67 Water-proof Radial Cylinder-

the Newest Addition to the Dust-proof/ Splash-proof ROBO Cylinder RCP4W Series


Features



Dust-proof/Splash-proof Performance of IP67

The RCP4W rod type adopts a splash-proof structure to shut out water even when the cylinder is submerged in water, for use in food preparation machines, washing machines and other systems exposed to water splashes and jets.

IP Marking

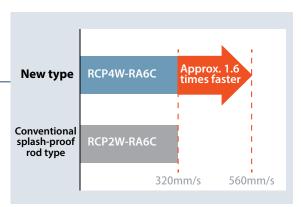
The splash-proof performance has been measured only with regard to water. Protection against coolant, cleaning solution, etc., is not guaranteed. If you wish to use your product in an environment where it may come in contact with coolant, consult IAI beforehand.

IP Classes

High	l	P class	Description	Applicable IAI products
	IP67	Solid objects	Fully protected against the entry of powder dust into the equipment.	
	07	Water	Even when the equipment is submerged in water, water does not enter the equipment.	Rod type Slider type RCP4W RCP2W-SA16C
stance	IP65	Solid objects	Fully protected against the entry of powder dust into the equipment.	Slider type RCP4W Slider type ISWA/ISPWA
nmental Resis		Water The equipment receives no harmful effect even when directly hit by water jets from any direction.		Pulse motor rod type RCP2W-RA4C/RA6C SCARA robot IX-NNW
Enviro		Solid objects	Dust that would affect the operation of the equipment does not enter the equipment.	
	IP54	Water	The equipment receives no harmful effect even when contacted by water splashes from any direction.	High-thrust rod type RCP2W-RA10C 24-V servo motor rod type RCAW-RA3/RA4 200-V servo motor rod type RCS2W-RA4
	IP50	Solid objects	Dust that would affect the operation of the equipment does not enter the equipment.	No.
Low	IPOU	Water	The equipment is not protected against water.	Small gripper (dust-proof type) RCP2W-GR

2

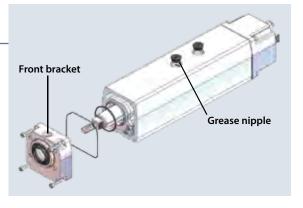
Built-in Guide to Achieve Longer Strokes While Accommodating a Radial Load on the Rod


A ball-circulating linear guide is built into the actuator to achieve longer strokes of up to 500 mm. The guide also accommodates a load offset from the rod center (by up to 100 mm), which expands the degree of freedom in transfer applications.

3

High Speed and High Acceleration/Deceleration

The RCP4W boasts the maximum acceleration/deceleration of 1 G and maximum speed of 560 mm/s, which are approx. 1.6 times the maximum acceleration/deceleration and maximum speed of any conventional splash-proof rod type, enabling a shorter cycle time for your system.



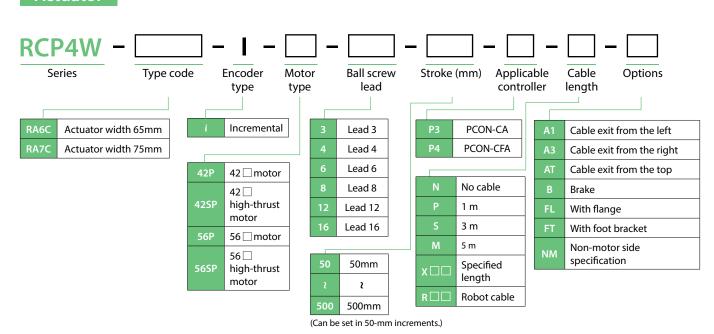
4

Improved Maintainability

The ball screw and guide can be lubricated at the same time by adding grease from the grease nipples provided on the top face of the nut holder. Another grease nipple is provided on the top face of the front bracket to grease the sliding part of the rod.

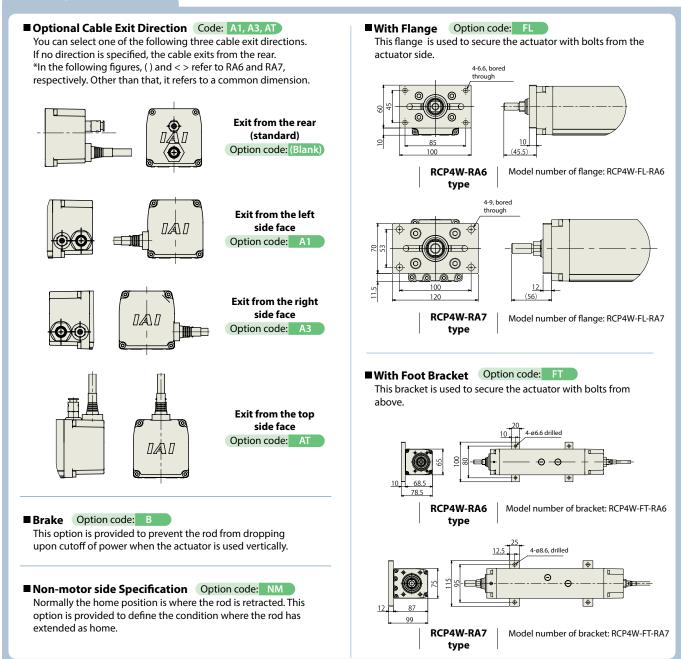
Replacing the seals at the sliding part of the rod is very easy, because all you need is to change the front bracket.

тел.: (495) 662-87-56 e-mail: iai@actuator.ru


Specification Table

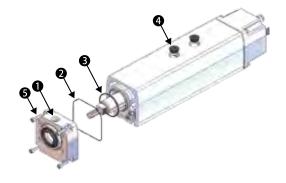
	External view		Stroke	Ball screw lead	Maximum speed	Payload (kg)		Maximum		
Type		Actuator size (mm)	(mm)	(mm)	(mm/s) (*1)	Horizontal	Vertical	Push Force (N)	Reference page	
		589	50~400 (Every 50)	12	560 <500>	20	3	93		
RA6C					6	360	40	8	185	P5
	No.			3	180	50	16	370		
					70		30	590		
			50~500 (Every 50)	16	560 <400>	40	7	219		
RA7C				8	340 <280>	50	15	437	P7	
				4	170 <140>	70	25	875		
				7	80	-	45	1030		

^(*1) The values in < > apply when the actuator is used vertically.


Model Number

Actuator

The settings for motor type, ball screw lead, stroke and options vary from one model to another. For details, check the specifications for each model.


Options

Spare Parts

As a rough guide, replace the scraper (front bracket assembly) after every 1,000 km of traveling or 1 year of use. When replacing the scraper, specify the applicable model number in your order as shown below.

No	Name	Model	Order unit	
NO	Name	RA6 RA7		Order unit
1	Front bracket assembly	RCP4W-FBA-RA6	RCP4W-FBA-RA7	1
2	O-ring	RCP4W-OR1-RA6	RCP4W-OR1-RA7	1
3	O-ring	RCP4W-OR2-RA6	RCP4W-OR2-RA7	1
4	Cap	RCP4W	1	
5	Bolt	(Supplied with the fro		

RCP4W-RA6

ROBO Cylinder 24-V Pulse motor Water-proof rod type Actuator width: 65 mm

Model Specification Items

RCP4W — RA6C – Series Type

Encoder type

I: Incremental specification

Motor type Lead Pulse motor, 12:12mm 6: 6mm 3: 3mm size 42 42SP: High-thrust pulse motor, size 42

тел.: (495) 662-87-56

Stroke 50:50mm 400 : 400mm (every 50-mm)

Applicable controller P3: PCON-CA

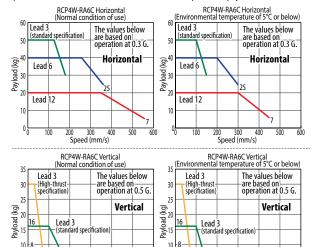
P3

Cable length Options N: None P: 1m S: 3m M: 5m

X : Specified length R : Robot cable

Refer to the option list below. * If the high-thrust pulse motor is selected, the actuator comes standard with option B (Brake).

Built-in Guide Mechanism


Notes lectio

- (1) The maximum payload is the value when operated horizontally and vertically at 0.3G and 0.5G, respectively. Note that raising the acceleration causes the payload to drop. (Refer to P. 10 for the maximum payload by acceleration.)
- (2) The horizontal payload is calculated by assuming that an
- external guide is also used.

 (3) The high-thrust specification is designed exclusively for vertical operation. It comes standard with a brake.

■ Correlation Diagrams of Speed and Payload

Due to its pulse motor characteristics, the RCP4 series provides lower payload at higher speed. Check the tables below to see if the desired speed and payload can be achieved.

Lead 12

300 400

Speed (mm/s)

Actuator Specifications

■ Leads and Payloads

Model number			Maximum p Horizontal (kg)	ayload (kg) Vertical (kg)	Maximum push force (N)	Positioning repeatability (mm)	Stroke (mm)
	RCP4W-RA6C-I-42P-12-①-P3-②-③		20	3	93		
Standard specification	RCP4W-RA6C-I-42P-6-①-P3-②-③	6	40	8	185		50 to 400
·	RCP4W-RA6C-I-42P-3-①-P3-②-③	3	50	16	370	±0.02	(in 50-mm
High-thrust specification	RCP4W-RA6C-I-42SP-3-①-P3-②-③-B		-	30	590		

Legend ① Stroke ② Cable length ③ Options

■ Stroke and Maximum Speed (unit: mm/s)

Lead 6

200 300 4 Speed (mm/s)

Lead 12

400 500

Stroke Lead	50 (mm)	100 ~ 400 (in 50-mm increments)			
12	500 [450 <400>]	560 <500> [450 <400>]			
6	360 [300] 180 [150]				
3					
3	<70> [<70>]				

^{*}The values in < > apply when the actuator is used vertically. *The values in [] apply when the actuator is used at an environmental temperature of 5° C or below.

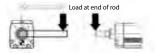
① Stroke

Ctualia (mana)	Standard price					
Stroke (mm)	Standard specification	High-thrust specification				
50	-					
100	_					
150	_					
200	-					
250	-	_				
300	-					
350	-					
400	-	1				

① Options

Name	Option code	See page	Standard price
Cable exit from the left side face	A1		_
Cable exit from the right side face	А3		-
Cable exit from the top face	AT		-
Brake	В	P4	-
With flange	FL		-
With foot bracket	FT		-
Non-motor side specification	NM	1	_

^{*}The high-thrust specification comes standard with a brake


② Cable length

Type	Cable symbol	Standard price
	P (1m)	-
Standard type	S (3m)	ı
	M (5m)	_
	X06 (6m) ~ X10 (10m)	-
Special length	X11 (11m) ~ X15 (15m)	-
'	X16 (16m) ~ X20 (20m)	-
	R01 (1m) ~ R03 (3m)	_
	R04 (4m) ~ R05 (5m)	-
Robot cable	R06 (6m) ~ R10 (10m)	_
	R11 (11m) ~ R15 (15m)	-
	D16 (16m) D20 (20m)	

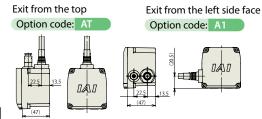
Actuator Specifications

Item	Description
Drive system	Ball screw ø10mm, rolled C10
Positioning repeatability	±0.02mm
Lost motion	0.1mm or less
Rod	ø22 stainless steel pipe
Rod non-rotation accuracy	±0.1 deg
Allowable load/allowable torque at end of rod	Refer to the page on the right.
Lost offset distance at end of rod	100mm or less
Protective structure	IP67
Ambient operating temperature humidity	0 to 40°C 85% RH or less (Non-condensing)

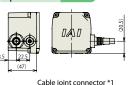
Offset distance at end of rod (100mm or less)

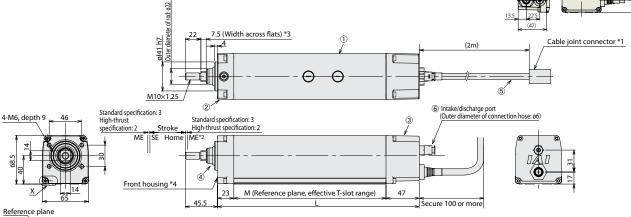
Dimensional Drawings

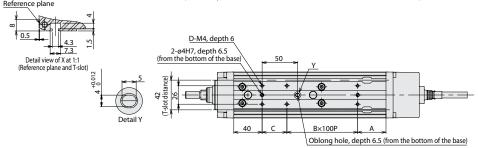
CAD drawings can be downloaded www.intelligentactuator.com from the website.

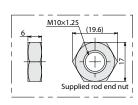


- *1 Connect the motor and encoder cables.
- *2The rod moves to the ME during home return, so pay attention to possible contact with surrounding structures and objects.
- *3 The orientation of the width across flats varies from one product to another.
- *4 When installing the actuator using the front housing or flange, make sure the actuator does not receive any external force

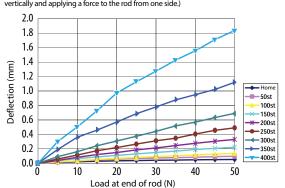

■ Materials of Key Components


1	Frame	Aluminum extrusion material (A6063SS-T5 or equivalent) with white alumite coating
2	Front bracket	Aluminum die-cast
3	Rear cover	Aluminum die-cast
4	Rod	Stainless steel pipe (SUS304 or equivalent), polished + hard chrome plated
(5)	Actuator cable	Polyvinyl chloride (PVC)
6	Intake/exhaust port	Polyphenylene sulfide (PPS)


<Cable Exit Direction Option>



Exit from the right side face
Option code: A3



■ Rod Deflection of RCP4W-RA6C (Reference Values)

(The graph below plots deflection as measured by installing the actuator vertically and applying a force to the rod from one side.)

■ Dimensions and Mass by Stroke

		Dimensions and Mass by Stroke									
Stroke		50	100	150	200	250	300	350	400		
W	Without brake		335	385	435	485	535	585	635		
W	/ith brake (*)	346	396	446	496	546	596	646	696		
W	ithout brake	40	40	40	40	40	40	40	40		
W	/ith brake (*)	101	101	101	101	101	101	101	101		
	В	1	1	2	2	3	3	4	4		
	C	35	85	35	85	35	85	35	85		
D		6	6	8	8	10	10	12	12		
Without brake		215	265	315	365	415	465	515	565		
With brake		276	326	376	426	476	526	576	626		
le static lo	ad at end of rod (N)	65.6	51.2	41.7	34.9	29.8	25.7	22.4	19.7		
dynamic	Load offset 0 mm	32.4	23.6	18.1	14.4	11.6	9.5	7.7	6.2		
of rod (N)	Load offset 100 mm	25.6	19.7	15.7	12.7	10.4	8.6	7.1	5.7		
static torq	ue at end of rod (N•m)	6.6	5.2	4.3	3.7	3.2	2.8	2.6	2.3		
Allowable dynamic torque at end of rod (N·m)		2.6	2.0	1.6	1.3	1.0	0.9	0.7	0.6		
Without brake With brake		3.1	3.5	3.8	4.2	4.6	5.0	5.4	5.8		
		3.6	4.0	4.4	4.8	5.2	5.6	6.0	6.4		
	W W W W W W W W W W W W W W W W W W W	With brake (*) Without brake With brake (*) B C D Without brake With brake el static load at end of rod (N) dynamic	With brake (*) 346 Without brake 40 With brake (*) 101 B 1 C 35 D 6 Without brake 215 With brake 276 et static load at end of rod (N) 65.6 dynamic Load offset 10 mm 32.4 of rod (N) Load offset 100 mm 25.6 dynamic torque at end of rod (N·m) 6.6 dynamic torque at end of rod (N·m) 2.6 Without brake 3.1 With brake 3.6	With brake (*) 346 396 Without brake 40 40 With brake (*) 101 101 B 1 1 1 C 35 85 D 6 6 6 Without brake 215 265 With brake 276 326 et static load at end of rod (N) 65.6 51.2 dynamic Load offset 0 mm 32.4 23.6 of rod (N) Load offset 100 mm 25.6 19.7 dynamic torque at end of rod (N+m) 6.6 5.2 dynamic torque at end of rod (N+m) 2.6 2.0 Without brake 3.6 4.0	With brake (*) 346 396 446 Without brake 40 40 40 With brake (*) 101 101 101 B 1 1 2 C 35 85 35 D 6 6 8 Without brake 215 265 315 With brake 276 326 376 et static load at end of rod (N) 65.6 51.2 41.7 dynamic Load offset 0 mm 32.4 23.6 18.1 of rod (N) Load offset 100 mm 52.6 19.7 15.7 dynamic torque at end of rod (Nm) 6.6 5.2 4.3 dynamic torque at end of rod (Nm) 2.6 2.0 1.6 Without brake 3.6 4.0 4.4	With brake (*) 346 396 446 496 Without brake 40 40 40 40 40 With brake (*) 101 101 101 101 B 1 1 2 2 C 35 85 35 85 D 6 6 8 8 8 Without brake 215 265 315 365 With brake 276 326 376 426 et static load at end of rod (N) 65.6 51.2 41.7 34.9 dynamic Load offset 0 mm 32.4 23.6 18.1 14.4 of rod (N) Load offset 100 mm 25.6 19.7 15.7 12.7 static torque at end of rod (Nm) 6.6 5.2 4.3 3.7 dynamic torque at end of rod (Nm) 2.6 5.2 4.3 3.7 dynamic torque at end of rod (Nm) 2.6 5.2 4.3 3.7 Without brake 3.1 3.5 3.8 4.2 With brake 3.6 4.0 4.4 4.8	With brake (*) 346 396 446 496 546 Without brake (*) 101 40	With brake (*) 346 396 446 496 546 596 Without brake (*) 40	With brake (*) 346 396 446 496 546 596 646 Without brake (*) 40		

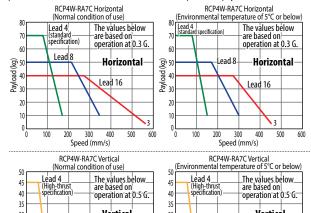
(*) The dimensions of the high-thrust specification include the brake.

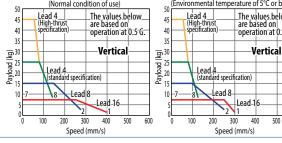
Applicable Controller

RCP4 series actuators can be operated with the controller indicated below. Select the type according to your intended application

KLP4 series actuators can be operated with the controller indicated below. Select the type according to your intended application.									
	Name	External view	Model number	Features	Maximum number of positioning points	Input Power	Power supply capacity	Standard price	Reference page
	Positioner type		PCON-CA-42PI-NP-□-0-□ PCON-CA-42PI-PN-□-0-□	Positioner type based on PIO control	512 points –		-		
	Pulse-train type		PCON-CA-42PI-PLN- PCON-CA-42PI-PLP- -0-	Pulse-train input type The actuator can be operated freely by pulse-train control.	-	DC24V	Refer to P. 13	-	Refer to P. 12
	Field network type		PCON-CA-42PI-○-0-0-□	Supporting 7 major field networks	768 points			-	
			9 41		: (DV CC DD CN MI	FC FD)			

RCP4W-RA ROBO Cylinder 24-V Pulse moto Water-proof rod type Actuator width: 75 mm Model RCP4W — RA7C – Specification Encoder Applicable Cable length Series Type Motor type Stroke Options Lead Items controller type N: None P: 1 m S: 3 m M: 5 m 50 : 50mm Refer to the option list Pulse motor, 16:16mm P3:PCON-CA 56P: I: Incremental specification 8: 8mm 4: 4mm size 56 P4:PCON-CFA 500 : 500mm (every 50-mm) 56SP: High-thrust pulse motor, size 56 *If the high-thrust pulse *The PCON-CFA is motor is selected, the actuator comes standard with option B (Brake). designed exclusively for the high-thrust specification. Specified length X 🔲 : Specified ler R 🔲 : Robot cable


Notes lectio


- (1) The maximum payload is the value when operated horizontally and vertically at 0.3G and 0.5G, respectively. Note that raising the acceleration causes the payload to drop. (Refer to P. 10 for the maximum payload by acceleration.)
- (2) The horizontal payload is calculated by assuming that an
- external guide is also used.

 (3) The high-thrust specification is designed exclusively for vertical operation. It comes standard with a brake.

■ Correlation Diagrams of Speed and Payload

Due to its pulse motor characteristics, the RCP4 series provides lower payload at higher speed. Check the tables below to see if the desired speed and payload can be achieved.

Actuator Specifications

■ Leads and Payloads

	Model number				Maximum push force (N)	Positioning repeatability (mm)	Stroke (mm)
	RCP4W-RA7C-I-56P-16-①-P3-②-③	16	40	7	219		
Standard specification	RCP4W-RA7C-I-56P-8-①-P3-②-③	8	50	15	437		50 to 500
	RCP4W-RA7C-I-56P-4-①-P3-②-③	4	70	25	875	±0.02	(in 50-mm increments)
High-thrust specification	RCP4W-RA7C-I-56SP-4-①-P4-②-③-B	4	-	45	1030		

Legend ① Stroke ② Cable length ③ Options

■ Stroke and Maximum Speed (unit: mm/s)

Stroke Lead	50 (mm)	100 ~ 500 (in 50-mm increments)				
16	500 [450 <300>]	560 <400> [450 <300>]				
8		0 <280> 0 <250>				
4		0 <140> 0 <125>]				
4		<80> [<80>]				

*The values in < > apply when the actuator is used vertically.

*The values in [] apply when the actuator is used at an environmental temperature of 5°C or below.

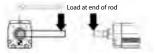
① Stroke

Chualia (mama)		rd price
Stroke (mm)	Standard specification	High-thrust specification
50	-	
100	-	
150	_	
200	_	
250	_	
300	_	_
350	_	
400	_	
450	-]
500	=]

① Options

Name	Option code	See page	Standard price
Cable exit from the left side face	A1		_
Cable exit from the right side face	A3		-
Cable exit from the top face	AT		-
Brake	В	P4	-
With flange	FL		_
With foot bracket	FT		-
Non-motor side specification	NM		_

^{*}The high-thrust specification comes standard with a brake


② Cable length

Type	Cable symbol	Standard price
	P (1m)	_
Standard type	S (3m)	_
	M (5m)	_
	X06 (6m) ~ X10 (10m)	-
Special length	X11 (11m) ~ X15 (15m)	_
	X16 (16m) ~ X20 (20m)	_
	R01 (1m) ~ R03 (3m)	_
	R04 (4m) ~ R05 (5m)	-
Robot cable	R06 (6m) ~ R10 (10m)	_
	R11 (11m) ~ R15 (15m)	_
	R16 (16m) ~ R20 (20m)	_

Actuator Specifications

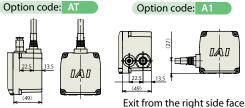
Item	Description
item	
Drive system	Ball screw ø12mm, rolled C10
Positioning repeatability	±0.02mm
Lost motion	0.1mm or less
Rod	ø25 stainless steel pipe
Rod non-rotation accuracy	±0.1 deg
Allowable load/allowable torque at end of rod	Refer to the page on the right.
Lost offset distance at end of rod	100mm or less
Protective structure	IP67
Ambient operating temperature, humidity	0 to 40°C, 85% RH or less (Non-condensing)

Offset distance at end of rod (100mm or less)

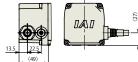
e-mail: iai@actuator.ru тел.: (495) 662-87-56 www.actuator.ru

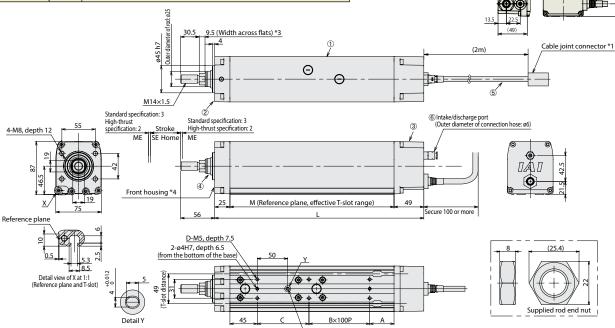
Dimensional Drawings

www.intelligentactuator.com

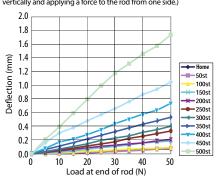


- *1 Connect the motor and encoder cables.
- *2 The rod moves to the ME during home return, so pay attention to possible contact with surrounding structures and objects.
- *3 The orientation of the width across flats varies from one product to another.
- *4 When installing the actuator using the front housing or flange, make sure the actuator does not receive any external force


■ Materials of Key Components


1	Frame	Aluminum extrusion material (A6063SS-T5 or equivalent) with white alumite coating
2	Front bracket	Aluminum die-cast
3	Rear cover	Aluminum die-cast
4	Rod	Stainless steel pipe (SUS304 or equivalent), polished + hard chrome plated
(5)	Actuator cable	Polyvinyl chloride (PVC)
6	Intake/exhaust port	Polyphenylene sulfide (PPS)

<Cable Exit Direction Option> Exit from the top Exit from the left side face


Exit from the right side face Option code: A3

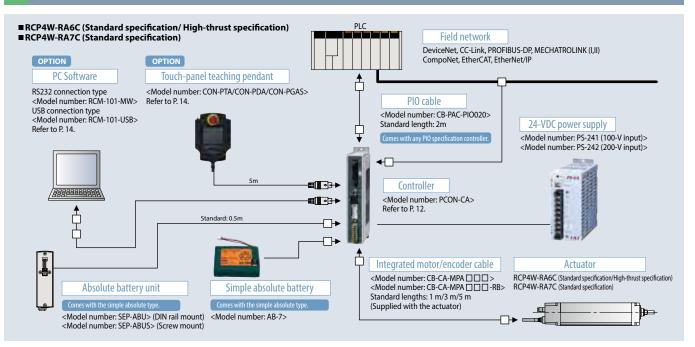
■ Rod Deflection of RCP4W-RA7C (Reference Values)

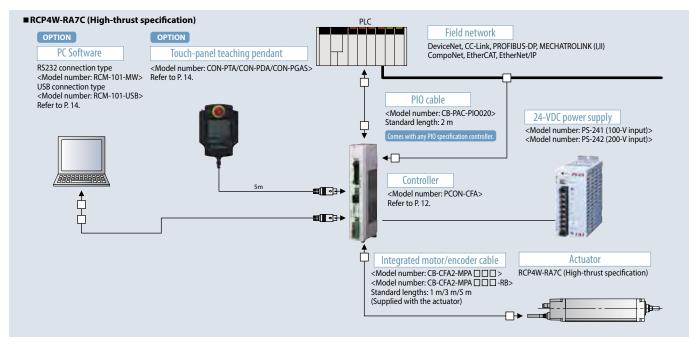
(The graph below plots deflection as measured by installing the actuator vertically and applying a force to the rod from one side.)

Oblong hole, depth 6.5 (from the bottom of the base)

■ DIM	Dimensions and Mass by Stroke										
	Stroke	50	100	150	200	250	300	350	400	450	500
- 1	Without brake	344	394	444	494	544	594	644	694	744	794
L	With brake (*)	399	449	499	549	599	649	699	749	799	849
Α	Without brake	40	40	40	40	40	40	40	40	40	40
^	With brake (*)	95	95	95	95	95	95	95	95	95	95
	В	1	1	2	2	3	3	4	4	5	5
	С		135	85	135	85	135	85	135	85	135
	D		6	8	8	10	10	12	12	14	14
М	Without brake	270	320	370	420	470	520	570	620	670	720
IVI	With brake	325	375	425	475	525	575	625	675	725	775
Allowab	le static load at end of rod (N)	112.7	91.5	76.7	65.7	57.2	50.4	44.8	40.2	36.2	32.7
Allowable		49.0	37.4	29.9	24.5	20.4	17.1	14.5	12.3	10.3	8.6
load at end	of rod (N) Load offset 100 mm	38.7	31.0	25.5	21.4	18.1	15.4	13.2	11.2	9.5	8.0
Allowable static torque at end of rod (N•m)		11.4	9.3	7.9	6.8	6.0	5.4	4.9	4.5	4.1	3.8
Allowable dynamic torque at end of rod (N·m)		3.9	3.1	2.5	2.1	1.8	1.5	1.3	1.1	1.0	0.8
Mass	Without brake	5.6	6.1	6.6	7.2	7.7	8.2	8.7	9.2	9.7	10.2
(kg)	With brake	6.4	6.9	7.4	7.9	8.4	9.0	9.5	10.0	10.5	11.0
(V) =1 II	ATT 1: 1: Cd 1: 1 d 1										

(*) The dimensions of the high-thrust specification include the brake.


Applicable Controller


RCP4 series actuator	RCP4 series actuators can be operated with the controller indicated below. Select the type according to your intended application.										
Name	External view	Model number	Features	Maximum number of positioning points	Input Power	Power supply capacity	Standard price	Reference page			
Positioner type	r.	PCON-CA-56PI-NP-□-0-□ PCON-CA-56PI-PN-□-0-□	Positioner type based on PIO control	512 points			-				
Pulse-train type	M	PCON-CA-56PI-PLN-□-0-□ PCON-CA-56PI-PLP-□-0-□	Pulse-train input type The actuator can be operated freely by pulse-train control.	-	DC24V	Refer to P. 13	ı	Refer to P. 12			
Field network type		PCON-CA-56PI-○-0-0-□	Supporting 7 major field networks	768 points			-				
Positioner type	11	PCON-CFA-56SPI-NP-□-0-□ PCON-CFA-56SPI-PN-□-0-□	High-thrust specification Positioner type based on PIO control	512 points			1				
Pulse-train type		PCON-CFA-56SPI-PLN-□-0-□ PCON-CFA-56SPI-PLP-□-0-□	High-thrust specification Pulse-train input type	-	DC24V	Refer to P. 13	ı	Refer to P. 12			
Field network type		PCON-CFA-56SPI-○-0-0-□	High-thrust specification Supporting 7 major field networks	768 points			-				

*In the model numbers shown above, \bigcirc indicates the field network specification (DV, CC, PR, CN, ML, EC or EP).

System Configulation

Notes

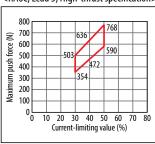
- This actuator conforms to the IP67 standard, but it is not IP67-protected when operated in water. IP67 defines a degree of protection against water, so if the actuator is to be used in an environment where it may come in contact with coolant, etc., contact IAI beforehand.
- 2. The air joint attached to the motor cover of the actuator is connected to the pipe for bleeding air from the actuator. Connect an air hose of Ø6 in outer diameter and extend the opposite end of the hose to a location free from liquids and powder dust.
- 🔧 If the actuator is installed with its rod facing up, be careful not to let any liquid collect in the scraper part of the front bracket.
- 4. If the environmental temperature is 5°C or below, the speed drops compared to when the actuator is used in normal conditions. For details, refer to the correlation diagram of speed and payload on the page featuring the specifications of each model.

Payload by Acceleration

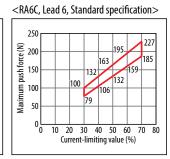
(Unit of payload: kg)

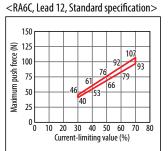
	TVDF	Installation	Land	Acceleration (G)				
	ТҮРЕ	direction	lirection Lead		0.5	0.7	1	
			12	20	15	12	10	
		Horizontal	6	40	35	25	20	
	RA6C Standard		3	50	45	40	35	
	specification		12	3	3	-	_	
		Vertical	6	8	8	_	_	
_			3	16	16	-	-	
oac	RA6C High-thrust specification		3	30	30	-	_	
Payload			16	40	35	30	25	
_		Horizontal	8	50	45	40	35	
	RA7C Standard		4	70	60	50	45	
	specification		16	7	7	-	-	
		Vortical	8	15	15	-	_	
		Vertical	4	25	25	_		
	RA7C High-thrust specification		4	45	45			

Correlation Diagrams of Push Force and Current-limiting Value

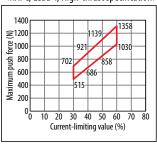

The push force can be adjusted by changing the current-limiting value of the controller. Refer to the graphs below to select a model capable of generating the required push force.

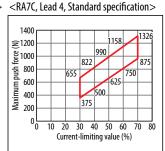
Note

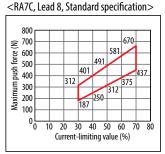

- The push force varies depending on the slide resistance and also due to aging. Accordingly, the push forces shown in the graphs are a little conservative relative to the current-limiting values. Select a model whose graph shows the desired push force inside the red lines.
- All push forces have been measured at a speed of 20 mm/s. Note that the push force changes when the speed is changed.

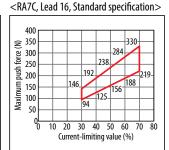

■RCP4W-RA6C type

<RA6C, Lead 3, High-thrust specification> <RA6C, Lead 3, Standard specification>

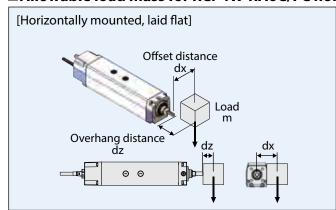

\$\\\ \text{300} \\ \text{300}



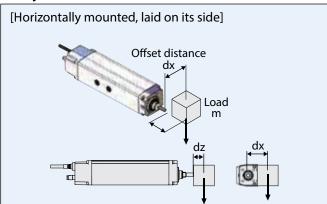


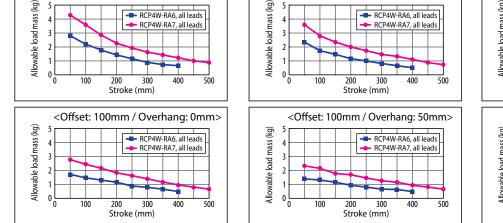

■RCP4W-RA7C type

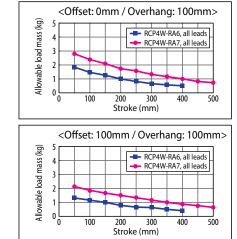
<RA7C, Lead 4, High-thrust specification>



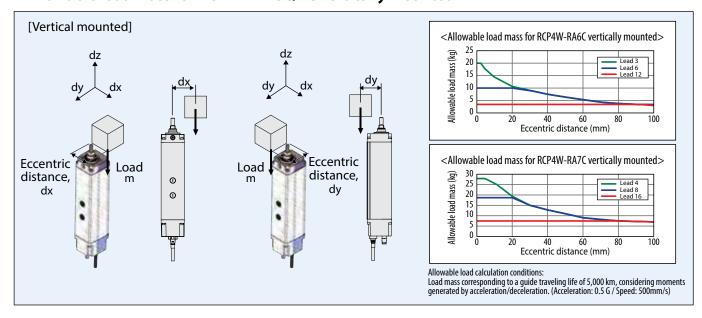
e-mail: iai@actuator.ru

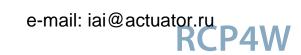

Selection References (Guide for Selecting Allowable Load for Radial Cylinder)


The RCP4W rod type cylinder has a built-in guide, so loads up to a certain level can be applied to the rod without using an external guide. Refer to the graphs below for the allowable load mass. If the allowable load will be exceeded under the required operating conditions, add an external guide.


■Allowable load mass for RCP4W-RA6C/7C horizontally mounted

<Offset: 0mm / Overhang: 0mm>





Allowable load calculation conditions: Load mass corresponding to a guide traveling life of 5,000 km, considering moments generated by acceleration/deceleration. (Acceleration: 1 G / Speed: 500 mm/s)

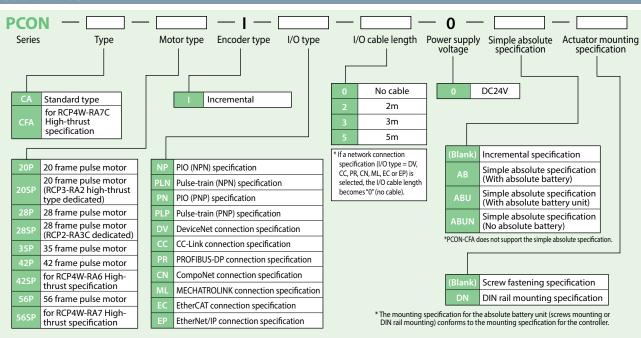
<Offset: 0mm / Overhang: 50mm>

■ Allowable load mass for RCP4W-RA6C/7C vertically mounted

PCON-CA/CFA

Positioner / Pulse-train Type RCP4W Controller

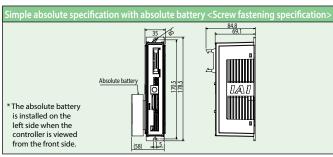
Refer to the catalog of the RCP4 series for the details of each controller.

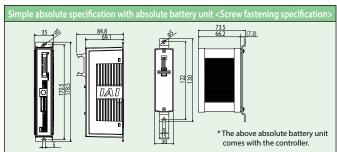


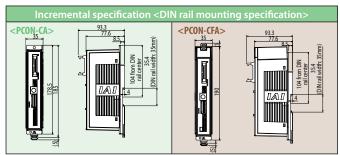
List of Models

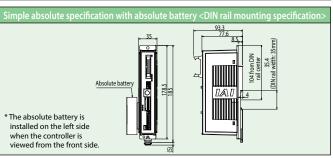
ROBO Cylinder Position Controller < PCON-CA/CFA>

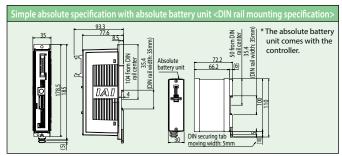

		External vie	w			Transport of the latest and the late							
								Fi	eld network	type			
I/O type			Positioner	Pulse-train	DeviceNet	CC-Link	PROFI [®] BUS	CompoNet	MECHATROLINK	Ether CAT.	EtherNet/IP		
				type	type	DeviceNet connection specification	CC-Link connection specification	PROFIBUS-DP connection specification	CompoNet connection specification	MECHATROLINK connection specification	EtherCAT connection specification	EtherNet/IP connection specification	
	I/C	type model	code	NP/PN	PLN/PLP	DV	CC	PR	CN	ML	EC	EP	
		Incremental	specification	_	_	-		_	_	_		_	
ice	DCON		With absolute battery	_	_	ı	1	_	_	_	1	_	
Standard price	PCON Simple absolute specification	-CA	-CA	With absolute battery unit	_	_		_	_	_	_	_	_
Stand		No absolute battery	_	_	_	_	_	_	_	_	_		
	PCON -CFA	Incremental	specification	_	_	_	_	_	_	_	_	_	


Model Number




e-mail: iai@actuator.ru тел.: (495) 662-87-56 www.actuator.ru


External Dimensions



Specification Table

Item		Descr	ription			
	item	PCON-CFA PCON-CFA				
Number of controlled ax	es	1 axis				
Power supply voltage		24 VDC ± 10%				
Load capacity (Current consumption of controlled RCP4)	M Motor type 42P, 42SP, 56P	2A max.				
axes included) (Note 1)	56SP		6A max.			
Power supply for electro (for actuators with brake		24 VDC ± 10%, 0.15 A (max.)	24 VDC ± 10%, 0.5 A (max.)			
Rush current (Note 2)		8.3 A	10 A			
Momentary power failur	e resistance	500 μs max.				
Applicable encoder		Incremental encoder of 800 pulses/rev in resolution				
Actuator cable length		20m max.				
External interface	PIO specification	Dedicated 24-VDC signal input/output (NPN or PNP selected) Up				
	Field network specification	DeviceNet, CC-Link, PROFIBUS, CompoNet, MECHATROLINK, EtherCA	AT, EtherNet/IP			
Data setting/input meth	od	PC software, touch-panel teaching pendant				
Data retention memory		Position data and parameters are saved in the non-volatile memory (The memory can be written an unlimited number of times.)				
Operation modes		Positioner mode / Pulse-train control mode (Selectable by parameter setting)				
Number of positions in p	ositioner mode	Up to 512 points for the positioner type, up to 768 points for the network type (Note) The number of positioning points varies depending on the PIO pattern selected.				
		Differential method (line driver method): 200 kpps max. / Cable length: 10 m max.				
Pulse-train interface	Input pulse	Open collector method: Not supported * If the host uses open-collector output, convert the open-collector pulses to differential pulses using the AK-04 (available as an option).				
ruise-train interface	Command pulse magnification (electronic gear ratio: A/B)	1/50 < A/B < 50/1 Setting range of A and B (set by parameters): 1 to 4096				
	Feedback pulse output	None				
Isolation resistance		500-VDC 10 MΩ or more				
Electric shock protection	mechanism	Class I basic isolation				
Mass	Incremental specification	Screw fastening type: 250 g or less DIN rail securing type: 285 g or less	Screw fastening type: 270 g or less DIN rail securing type: 305 g or less			
(Note 3) Simple absolute specification (190 g of battery weight included)		Screw fastening type: 450 g or less DIN rail securing type: 485 g or less				
Cooling method		Natural air cooling	Forced air cooling			
	Ambient operating temperature	0 to 40°C				
F	Ambient operating humidity	85%RH or less (non-condensing)				
Environment	Operating ambience	Not exposed to corrosive gases				
	Protection degree	IP20				

Note 1) The value increases by 0.3 A for the field network specification.

Note 2) After the power is turned on, rush current will flow for approx. 5 msec (at 40°C). Take note that the rush current varies depending on the impedance of the power-supply line.

Note 3) The value increases by 30 g for the field network specification.

Option

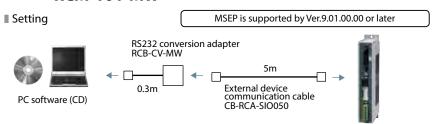

Teaching pendant

Summary Teaching device for positioning input, test operation, and monitoring.

Model

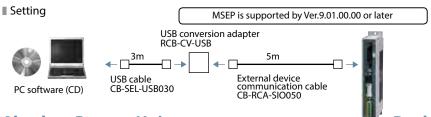
CON-PTA-C (Touch panel teaching pendant)

Setting



Specification

•			
Item	Touch panel teaching		
Model number	CON-PTA-C	CON-PDA-C	CON-PGAS-C-S
Туре	Standard type	Enable switch type	Safety-category compliant type
Display	65536 colors (16-bit colors), white LED backlight		
Operating ambient temperature/humidity	Temperature 0 to 40°C, humidity 85%RH or less (non-condensing)		
Protection degree	IP40		
Mass	Approx. 570g Approx. 600g		
Cable length	5m		
Accessories	Stylus	Stylus	Stylus, TP adapter (Model number: RCB-LB-TGS) Dummy plug (Model number: DP-4S) Controller cable (Model number: CB-CON-LB005)


PC software (Windows only)

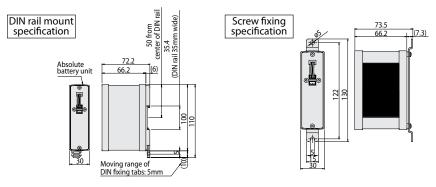
- * For the MSEP field network specification, the PC software is required.
- Summary A startup support software for inputting positions, performing test runs, and monitoring. With enhancements for adjustment functions, the startup time is shortened.
- Model **RCM-101-MW** (External device communication cable + RS232 conversion unit)

■ Model **RCM-101-USB** (External device communication cable + USB converter adapter + USB cable)

Absolute Battery Unit

- Summary Battery unit that comes with a simple absolute controller, used to back up the current controller position.
- Model **SEP-ABU** (DIN rail mount specification)

SEP-ABUS (screw fixing specification)


■ Specifications

Replacement battery

- Summary The replacement battery for the absolute data backup battery box.
- Model AB-7

ltem	Specification	
Ambient operating temperature, humidity	0 to 40°C (desirably around 20°C), 95% RH or below (non-condensing)	
Operating ambience	Free from corrosive gases	
Absolute battery	Model number: AB-7 (Ni-MH battery / Life: Approx. 3 years)	
Controller/absolute battery unit link cable	Model number: CB-APSEP-AB005 (Length: 0.5m)	
Mass	Standard type: Approx. 230g / Dust-proof type: Approx. 260g	

www.actuator.ru тел.: (495) 662-87-56 e-mail: iai@actuator.ru

CJ0205-1A-UST-1-0214

IAI America, Inc.

Headquarters: 2690 W. 237th Street, Torrance, CA 90505 (800) 736-1712 **Chicago Office:** 1261 Hamilton Parkway, Itasca, IL 60143 (800) 944-0333 **Atlanta Office:** 1220 Kennestone Circle, Suite 108, Marietta, GA 30066 (888) 354-9470

www.intelligentactuator.com

Ober der Röth 4, D-65824 Schwalbach am Taunus, Germany

IAI Robot (Thailand), CO., Ltd.

825 PhairojKijja Tower 12th Floor, Bangna-Trad RD., Bangna, Bangna, Bangkok 10260, Thailand

