

New Generation for Convenience

The next generation of controllers with the performance far exceeding the previous models are finally here.

The dynamic performance & basic software package (SEL Language) are greatly improved with more commands, a greater program data capacity, and improved safety and maintainability.

Table of Contents

System Construction	P.5-P.6
New Features	P.7-P.8
New Function	P.9-P.10
Upgrated Function: Path Operation	P.11-P.12
SEL Language Exceptional Control	P.13-P.14
New Commands for Palletising	P.15-P.16
New Command: Virtual Ladder Task	P.17-P.18
SEL Language Main Command Chart	P.19-P.20
DAC	D 21
RAS	P.21
Network	P.21 P.22
Network Debug Function: PC Software	P.21 P.22 P.23-P.24
RAS Network Debug Function: PC Software Type	P.21 P.22 P.23-P.24 P.25
RAS Network Debug Function: PC Software Type Option	P.21 P.22 P.23-P.24 P.25 P.26
RAS Network Debug Function: PC Software Type Option Part Names and Functions	P.21 P.22 P.23-P.24 P.25 P.26 P.27-P.28
RAS Network Debug Function: PC Software Type Option Part Names and Functions External Input and Output (I/O)	P.21 P.22 P.23-P.24 P.25 P.26 P.27-P.28 P.29-P.30
RAS Network Debug Function: PC Software Type Option Part Names and Functions External Input and Output (I/O) External Dimensions	P.21 P.22 P.23-P.24 P.25 P.26 P.27-P.28 P.29-P.30 P.31-P.32

Super High Intential X-SEL Control

Software

Network

Safety

Action

5

New Features

Since the introduction of our first Single Controller in 1986, Intelligent Actuator, Inc., has pursued innovation in speed, power, safety and serviceability. The high performance X-SEL controller is the culmination of 15 years of technological advancement.

All-in-one controller with newly developed digital servo driver.

A newly developed digital-servo driver is used in conjunction with a 17-bit serial encoder. Compared to the previous models (E/G Type), acceleration and deceleration of the velocity function is improved drastically, which shortens tact time.

igh Speed

O

 \bigcirc

Ð

O

0

O

All control boards and components are easily accessible.

Expansion I/O cards can be inserted in seconds, and the source of any trouble quickly diagnosed.

Easy

0660

Enhanced safety features and CE certification.

X-SEL Controller System has protection for external equipment following RAS(Reliability · Availability · Serviceability) guidelines. The safety function is enhanced by improving emergency stop and motor drive power shut off functionality when an error occurs.

Work efficiency is improved with absolute encoders

Since the 17 bit absolute encoder data has battery back-up, homing is not required after power up or when it recovers from an emergency stop. This option increases efficiency and productivity by reducing start-up and recovery time.

Increased PATH Speed & Accuracy

Due to the increased processing speed of the controller, the locus accuracy is greatly improved. Moreover, the speed of a path and a circle are faster with greater accuracy for dispensing.

New Functions

With improved movement performance in acceleration/deceleration, locus accuracy, and new functions such as synchronised axis operation, infinite stroke movement, push mode, and zone signal, the X-SEL can be used for various applications.

Synchro Operation

2 axis synchronous motion can handle payload which was not possible with single axis. Also it allows a longer Y axis for the gantry type.

Synchro

Zone Signal

The zone signal is the function that can output a signal when a slider moves inside a zone defined by the user. This function is convenient for interlocking and timing with peripherals devices. The maximum setting points are 4 (4 zones) for each axis.

Zone Signal Output

Example of Push Movement

Push Movement

It can continue to push a slider against a load like an air cylinder. You can use it for pushing parts, clamping, press fitting, etc. Since a signal can be output when it pushes against parts, distinction of work loads is possible.

Parts Maintains push force

Infinite Stroke Operation

By using the jog function, you can move infinitely in one direction like a conveyer.

Program Data Memory is Increased

Program step number is 6,000 steps (Top level class). Point number is 3,000 positions. Since a maximum of 16 programs can be multi-tasked simultaneously, complex control is possible.

Supports Virtual Ladder Task

You can construct ladder logic similar to a PLC using the program (ladder mnemonic). Since expansion condition supports not only ladder logic but also AND Block and OR Block in all programs, complicated conditions can be easily managed and organised.

X-SEL

72 new Commands are added to the Program. E/G Type 111 Commands -> X-SEL 186 Commands

The Super SEL Language has a reputation for making complicated control easy. New commands are added to the program.

Example

Palletise Commands
 Arch Motion Commands

Spline Commands and more

You can set the palletise points by just teaching 3 points, A, B & C.

Expansion of Variables and Symbol Definition

Number of variables that can be used in the program is doubled. (100 ->200) You can symbolise (name) variables, input and output ports, flags, points. Therefore, the program is easier to understand now.

Upgraded Function - Path Operation

Various kinds of path movements including 3D path movement are available.

Passing Position 2

Start Position

1 Axes

Command	Operation 1	Operation 2
PATH	P1	P20

Regardless of number of points, Path command uses only one line.

3D Path Movement

It can complete continuous motion from the designated start position (ex. P1) to end position (ex. P20) without stopping.

Dispensing on a complicated shape is as simple as designating the start position No. and the end position No. With all the points in between listed consecutively in the point table. Path movement can be 3D, therefore, dispensing operation of 3D objects is possible. Moreover, since the processing speed of the controller is much faster, the velocity and locus accuracy are greatly improved and thus can accommodate more complex shapes.

Spline Movement

Moves continuously from the designated base position to the ending position via spline interpolated curved motion.

(This diagram is for illustrative purpose only).

3D Path

3D Arc Motion

You can easily execute arc motion by simply selecting 2 conditions using the following commands.

CIRS

Circle movement (3-dimensional movement) that passes along the passage positions 1 and 2 in order with the present position as the starting point is performed.

ARCS

It passes along a passage position with the present position as the starting point, and arc movement (3-dimensional movement) to an end position is performed.

PRDQ

It reads into the variable, which specified the present position of axial No. specified by operand 1 by operand 2. The present position is acquirable from a PRED command at high speed.

Arc Motion

CIR, CIR2

Executes circular motion from the current position and passing through positions 1 and 2.

ARCC

Executes arc motion from the current position based on the designated centre angle and with a designated centre position as the radius.

2 Axes 2 Axes 3 Axes Passing Position 2 Axes 2 Axes 2 Axes

3 Axes

Passing Position 1

ARC, ARC2

Execute arc motion from the current position passing through positions 1 and 2.

ARCD

Executes arc motion from the base position to a designated ending position based on the centre angle.

Super SEL Language Exceptional Control, and Simplicity!

Super SEL Language which allows advanced control with simple program has been improved. New function such as palletise command, virtual ladder task and spline command are added to X-SEL controller. The result is an increase in the number of commands from 111 to 186 and using the Super SEL Language has become even easier.

What is Super SEL Language?

Super SEL Language is the simplest language among the many robot languages. Super SEL Language solves difficult problems, achieving advanced control using simple expression.

The flow chart below is one example.

Operation Explanation

When there is no part (flag 600 off), the actuator moves and the Z axis descends. When there is a part (flag 600 on), the Z axis moves to the next step (Flag is equivalent to PLC's auxiliary relay.)

It takes only one step with the Super SEL Language.

Step	Condition	Command	Output
1	N600	MOVL10	310

BASIC Language requires 3 steps.

Step	Label	Command
1		IF(600)=1 THEN NEXT
2		MOVE P10
3		DOUT(310)=1B
4	NEXT	The following operation
		command

Super SEL

Comparison to Previous Model (E/G Type)

X-SEL's programming related function and spec are improved dramatically compared to the previous model (E/G Type).

Item	ı	Content	SEL-E/G	X-SEL
Program Step		The total step capacity of a program	3000	6000
Position		Positioning Points	2000	3000
	Global	The integer variable which can be used by all programs	100	200
	Local	The integer variable which can be used by each programs	99	198
	Global	The integer variable which can be used by all programs	100	200
	Local	The integer variable which can be used by each programs	100	200
Elog	Global	Equivalent to the auxiliary relay of DLC	288	300
гау	Local		100	100
Virtual Imput Port		Internal monitor of e-stop, program, error, etc.	-	300
Virtual Output Port		Internal monitor of the e-stop	-	300
Symbol Definition		Contain symbols for variables, points, axes, etc.	-	1000

*Global is used in all programs. *Local is used in each program.

Introduction of New Function Virtual Input/Output Port System information can be output by SEL Program.

ex) Port No.7002: Controller back up battery low voltage warning.

No.	Imput Condition (Cnd) (Cmnd)		nput Condition Command Operation 1 Op (Cnd) (Cmnd) (Operand 1) (O		Output (Pst)	Comment
	7002	BTON	301			

By executing above step, output 301 turns on when back up battery is low.

Symbol Definition

You can name various symbols in the program with X-SEL Controller. Thus it is easier to understand the program.

* Maximum 9 small letters of alphabet and number.

Symbolised Sign : Variables (Integers and real number), Flag No, Input and Output Port No., Program No., Tag No., Subroutine No., Position No., and Axis No..

No.	Imput Condition (Cnd)	Command (Cmnd)	Operation 1 (Operand 1)	Operation 2 (Operand 2)	Output (Pst)	Comment
1		BTOF	complete			Positioning complete signal turns OFF
2		MOVP	waitpoint			It moves to a waiting point
3		BTON	complete			Signal turns on after the completion of move
4		MOVP	supplypt			It moves to a supplying point
5						

New Commands for Palletising

Palletise Commands were added to make palletising easier. The Palletising is set by designating palletise points (work payload position, order, etc.) and executed by using movement commands. You can set-up 10 palletising pattern (Pallet No.1~10) in 1 program.

Palletise Pattern Setting

You can select the pattern for palletising

Palletise the Number of Setting points

You can set number for X axis / Y axis direction.

Setting the Pitch

You can set the pitch for X axis / Y axis direction.

3 Point Teaching

You can set up a pallet just by teaching 3 points. The first point i the base point, the second is the end point in the X axis direction, and the third is the end point in the Y axis direction. Pitch is automatically calculated from the setting of each axis. Setting of 3 point teaching is also possible in XYZ 3D plane.

Arch Motion

When you execute palletising or pick & place using Z axis, this function moves X & Y axes before the Z axis reaches the point, thereby reducing moving time. You can change the beginning point and the ending point of the arch by arch trigger settina.

Movement Commands

PMVP Executes PTP (Point to Point) movement to computed palletise point.

PMVL Executes interpolated movement to a palletise point. PACH Executes arch motion from the current position to the selected palletise point.

*Sample Program *

Step No.	Expansion Condition (E)	Imput Condition (Cnd)	Command (Comnd)	Operation 1 (Operand 1)	Operation 2 (Operand 2)	Output (Pst)	Comment
1			BGPA	1			Palette No.1 setting start
2			PASE	1	2		Set palletise axis
3			PAPI	5	5		Set palletise numbers
4			PAPN	1			Set palletise pattern
5			PAPT	20	20		Set palletise pitch
6			EDPA				Palette No.1 setting completion
7							
8			HOME	11			returns home
9			VEL	500			Set velocity 500mm/sec
10			TAG	1			GOTO jump place of Step 17
11			MOVL	1			Moves to position 1 (supplying point)
12			PMVL	1			Moves to a palletise position
13			PINC	1			One advance about palletise position No.1
14			PTNG	1	1		Acquires current palletise position
15			CPGE	1	25	900	When palletise position reaches 25, output flag
16		900	PSET	1	1		Returns to position 1 after reaches position 25
17			GOTO	1			Jumps to TAG 1 of step 1

New Command - Virtual Ladder Task

The Ladder Task used by the PLC can be executed by the Super SEL Language. The program structure is similar to ladder logic, so, it's easy to convert from a ladder sequence.

Caution: Since this program is a software ladder which uses an interpreter, processing time is much slower compared to a PLC. Therefore, it's not suitable for large scale ladder processing.

For example, a ladder task shown in the following figure can be expressed in X-SEL ladder command structure as shown below.

Ladder Task

X-SEL Ladder Command

Command	Common PLC command
LD	LOAD
А	AND
0	OR
OUTR	OUT

No.	Expansion Condition (E)	N	Imput Condition (Cnd)	Command (Cmnd)	Operation 1 (Operand 1)	Operation 2 (Operand 2)	Output Port (Pst)
1	LD		0				
2	A		1				
3	0		300				
4	A	N	3				
5	A	N	301				
6	LD		3	OUTR	300		
7	A		2				
8	0		301				
9	A	N	0				
10	A	N	300	OUTR	301		
11							
12							
13							
14							

Rudder task

X-SEL supports And and Or Block logic which is essential to program complicated circuitry requiring multiple conditions.

Command	Common PLC Command
LD	ANB or AND LD
OB	ORB or OR LD

X-SEL Program

Γ	No	E	N	Cnd	Cmnd	Operand 1	Operand 2	Pst	Comment
	1	LD		700					Automatic forward command
	2	A		600					Automatic operation
	3	LD		5					Forward SW
	4	0		310					Self-sustaining contact point
	5	A	N	6					Backward SW
	6	A		601					Manual mode
	7	OB							Parallel circuit junction
	8	LD		20					Interlock I
	9	0		21					Interlock II
	10	AB							Series circuit junction
	11	A	N	311	OUTR	310			Forward output
	12	LD		701					Automatic backward command
	13	A		600					Automatic operation
	14	LD		6					Backward SW
	15	0		311					Self-sustaining contact point
	16	A	N	5					Forward SW
	17	A		601					Manual mode
	18	OB							Parallel circuit junction
	19	LD		20					Interlock I
	20	0		21					Interlock II
	21	AB							Series circuit junciton
	22	А	N	310	OUTR	311			Backward output

www.actuator.ru тел.:(495) 662-87-56, e-mail: iai@actuator.ru Super SEL Language Main Command Chart

There are 186 commands in Super SEL Language and all of those commands have symbols related to the meaning. A simple control program can be written using just 5-10 commands. It also allows you to write advanced control programs using various commands.

Command	Function
VEL	Set velocity
OVRD	Set velocity ratio
ACC	Set acceleration
DCL	Set deceleration
SCRV	Set S-motion ratio
OFST	Set offset
DEG	Set angle of division
BASE	Set base axis
GRP	Set group axis
HOLD	Hold port
CANC	Cancellation
VLMX	Set VLMX velocity
DIS	Set spline
POTP	Set PATH output type
PAPR	Set push
QRTN	Quick return mode

Actuator control command

SVON	Servo on
SVOF	Servo off
HOME	Home
MOVP	Move to designated position
MOVL	Interpolated move to designated position
MVPI	Incremental move to a position
MVLI	Incremental interpolated move to a position
PATH	Path movement
CIR	Circular movement
ARC	Arc movement
JBWF	Jog backward at input off
JBWN	Jog backward at input on
JFWF	Jog forward at input off
JFWN	Jog forward at input on
STOP	Axis slows to a halt
PSPL	Spline move
PUSH	Push move
CIR2	Circular movement 2
ARC2	Arc movement 2
CHVL	Velocitry change
ARCD	End position designated arc movement
ARCC	Centre position designated arc movement
PBND	Set positioning range
CIRS	3D circular movement
ARCS	3D arc movement

Program control

-	
GOTO	Jump
TAG	Declarare jump target
EXSR	Execute subroutine
BGSR	Begin subroutine
EDSR	End subroutine

Position command

Command	Function
PGET	Assign position to variable 199
PPUT	Assign value of variable 199
PCLR	Clear position data
PCPY	Copy position data
PRED	Read current position of axis
PTST	Confirm position data
PVEL	Assign position velocity
PACC	Assign position acceleration
PDCL	Assign position deceleration
PAXS	Read axis pattern
PSIZ	Check position size
GVEL	Acquire velocity data
GACC	Acquire acceleration data
GDCL	Acquire deceleration data
PRDQ	Read current position of designated axis

Input/output flag operation

BTON	Output port. Flag on
BTOF	Output port. Flag off
BTNT	Output port. Flag reverse
WTON	Input & Output port. Wait flag on
WTOF	Input & Output port. Wait flag off
IN	Binary input
INB	BCD input
OUT	Binary output
OUTB	BCD output
BTPN	ON pulse output
BTPF	OFF pulse output

Timer

TIMW	Timer
TIMC	Cancel timer
GTTM	Acquire time

Task control

EXIT	Exit program
EXPG	Execute program
ABPG	Stop other program
SSPG	Pause program
RSPG	Restart program

Virtual ladder task construction

TPCD	Designate a process when input conditions are not designated
CHPR	Change task level
TSLP	Task sleep
OUTR	Output relay for a ladder
TIMR	Timer relay for a ladder

Variable

Command	Function
LET	Assign
TRAN	Сору
CLR	Clear variables

Arithmetic calculation

ADD	Add
SUB	Subtract
MULT	Multiply
DIV	Divide
MOD	Remainder

Functional calculation

SIN	Sine
COS	Cosine
TAN	Tangent
ATN	Arctangent
SQR	Square root

Logic or

Exclusive logic

Logical calculation

3			
AND			Logic and

Comparison

OR

EOR

CPEQ	Compare equal
CPNE	Compare not equal
CPGT	Compare greater than
CPGE	Compare greater or equal
CPLT	Compare less than
CPLE	Compare less or equal

Zone

WZNA	Zone ON AND wait
WZNO	Zone ON OR wait
WZFA	Zone OFF AND wait
WZFO	Zone OFF OR wait
-	•

Palletising related

Cor

nmand	Function			
RCH	Arch motion			
CHZ	Arch motion Z axis declaration			
TRG	Set arch triger			
DFPZ	Set palletise Z axis offset			
GPA	Declare the start of palletise setting			
DPA	Declare the end of palletise setting			
PASE	Set palletising axis			
PAPT	Set palletising pitch			
PAPI	Set palletising No.			
PAPS	Set palletising points (3 points teaching)			
APN	Set palletising pattern			
PSLI	Set zig-zag			
CHZ	Set the palletising Z axis			
ACH	Arch motion at the palletising points			
DFAZ	Set the Z axis offset value of arch motion			
MVP	PTP move to palletising points			
MVL	Move between the palletising points			
TNG	Acquire palletising position No.			
PING	Calculate the palletise position No. +1			
DEC	Calculate the palletise position No1			
PSET	Direct set of the palletising position No.			
APG	Acquire palletising calculation data			
TRG	Set arch trigger of palletising			
PEXT	Set palletising combination			
EXT	Set arch motion combination			
ARG	Acquire palletising angle			
PAST	Set the base point of palletising			

System information and acquisition

AXST	Acquire axis status
PGST	Acquire program status
SYST	Acquire system status

Communication

OPEN	Open channel
CLOS	Close channel
READ	Input from channel
WRIT	Output to channel
SCHA	Set ending character
TMRD	Set the value of READ time out

String operation

SCPY	Copy strings
SCMP	Compare strings
SGET	Acquire strings
SPUT	Set strings
STR	Decimal conversion of strings
STRH	Hexaecimal conversion of strings
VAL	Decimal conversion of data in strings
VALH	Hexadecimal conversion of data in strings
SLEN	Set length

RAS

www.actuator.ru тел.:(495) 662-87-56, e-mail: iai@actuator.ru

RAS stands for Reliability, Availability, and Serviceability. X-SEL employs control, driver, and power units RAS to protect the controller.

RAS Control Unit

When the system starts up, it reads various device structure information stored in the controller and checks the adjustments of hardware and parameters.

You can check various errors detected by the main CPU from the teaching pendant and the PC software.

RAS Driver Unit

This system can shut off motor driver power for safety through hardware or software according to various conditions.

(emergency stop input from outside, internal system error, encoder disconnection, etc.)

RAS Power Source Unit

RAS checks for heating up of switching the power source and the over heat of the regenerative resistance, AC power input voltage abnormality, motor driver power voltage abnormality, etc. and shuts off motor and commands an emergency stop to the driver.

When the power is turned ON, it checks emergency stop relay contact. If there are problems, the system will not operate.

Other Function

Holds more than 700 error messages

The number of error messages has increased and it makes troubleshooting faster and more accurate compared to the E/G Type Controller.

Stores Maximum of 50 Error Message History

Maximum of 50 error message history with related information can be stored and this would help solve problems faster and make operation more efficient.

I/O Processing Program during All Operation Stop

The I/O processing program which starts up when emergency stop or operation pause signal is input, is added.

Emergency ABS-> INC Switching Function When the data battery is gone while using absolute type, it would able to be used as incremental type by adjusting the parameters.

System Error Output By Virtual Input/Output Port

By setting virtual input port which indicates error occurrence classified by level, you can output output occurrence. You can also output error contents of each axis and program by using SEL language commands.

Network

Recently, Network Systems are widely used with less wiring and data communication. X-SEL Controller corresponds to domestic and international main network systems.

Various Network specification

	DeviceNet	CC-Link	PROFIBUS
Communication Standard	DeviceNet 2.0 Group 2 Only Server	CC-Link Ver.1.10 Remote device station Remote I/O station	PROFIBUS-DP Ver. 1.10 Slave
Communication Speed	500K/250K/ 125K band	10M/5M/2.5M/ 625K/156Kbps	12M/1.5M/ 500K/187.5Kbps
Transmission Distance	100m/250m/500m	100m/160m/400m/ 900m/1200m	100m/200m/400m 1000m
Power	Supply from DeviceNet side (24V)	Supply from X-SEL Controller	Supply from X-SEL Controller
I/O Points(1 card)	Input 256 points(Max) Output 256 points(Max)	Input 256 points(Max) Output 256 points(Max)	Input 256 points(Max) Output 256 points(Max)
Max Card Installation	1	1	1

PROFIBUS

Network Corresponding Model Type

	Controller Type	Network I/O Points	Standard Slot	Expansion Slot 1	Expansion Slot 2	Expansion Slot 3	Туре
DeviceNet	КЕ Туре	256/256	•	1*	1*	1*	XSEL-KE-O-O-O
CC-Link	КЕ Туре	256/256	•	1*	1*	1*	XSEL-KE-O-O-C-O
PROFIBUS	КЕ Туре	256/256	•	1*	1*	1*	XSEL-KE-O-O-R-O

*Total up to 3 boards of I/O and SIO can be expanded when a network board is installed in the standard I/O connector slot

21

Substantial Debug Function - PC Software

This start up supporting software makes programming, setting position input, testing of axes, and monitoring of input & output signals of the controller possible. By adding debug functions such as step by step tracing and break point functions, it makes debugging more efficient.

- You can open several windows and operate them at the same time
- When the program is running, the current steps are classified by 3 colours making easy to check program status (Steps are classified by blue, red and green according to status).
- You can execute the program step by step (Step Execution Function).
- You can pause the program at an arbitrary position (Break Point Function).

Program Edit Window

• You can do direct value input, jog movement, incremental movement and obtain the current position or obtain current position from manual operation with the SERVO OFF in the position edit window.

Position Edit WIndow

•You can monitor Input & Output Ports, Flags, Integer Variables, Real Number Variables, and Axis status in the monitor window.

Monitor Window

X-SEL

Туре

Option

X-SEL

Controller

XSEL-KE-3-20A-10A-06IBL-P-EEE-2

1. Series Name	4. 1st Axis Motor W 5. 2nd Axis Motor W	7. Standard I/0 Slot (Slot1) N : NPN C : CC-Link	9. 1 : 100V 2 : 230V
2. Controller Type	6. 3rd Axis Motor W	D : DeviceNet	
J : Compact KE : All-Purpose EU	02 : 20W I : Incremental 03 : 30W A : Absolute 06 : 60W B : Brake 10 : 100W C : Creen	8. Expansion Slots (Slot 2, 3, 4) E: Not used	
3. Axis Number	15 : 150W L : Limit Switch	N1: Expansion 1/0 (NPN 32/16)	
1 : 1 Axis 2 : 2 Axes 3 : 3 Axes 4 : 4 Axes	20 : 200W M: Master Axis for 40 : 400W synchronous motion 60 : 600W S : Slave Axis for 75 : 750W synchronous motion	N2: Expansion 1/0 (NPN 16/32) P1: Expansion 1/0 (PNP 32/16) P2: Expansion 1/0 (PNP 16/32) SA: Expansion 1/0 (PNP 16/32) SB: Expansion SIO A type (RS 232C) SB: Expansion SIO B type (RS 422)	

Type simplified chart

J Type (Compact type)			
1 Axis			
Absolute	XSEL-J-1-□A		
Incremental	XSEL-J-1-□I		
Remarks	Motor wattage of axis is 30~750w.		

* When power supply voltage is 100V, keep in mind that the maximum total wattage of axes is limited to 400W.

KE Type (all-purpose EU type)						
	1 Axis	2 Axes	3 Axes	4 Axes		
Absolute	XSEL-KE-1-□A	XSEL-KE-2-□A-□A	XSEL-KE-3-□A-□A-□A	XSEL-KE-4-🗆A-🗆A-🗆A		
Incremental	XSEL-KE-1-□I	XSEL-KE-2-□I-□I	XSELE-KE-3-DI-DI-DI	XSEL-KE-4-01-01-01-01		
Remarks	Motor wattage of 1 axis is 30~750w.	Motor wattage of 2 axes is total of 1600W.	Motor wattage of 3 axes is total of 1600W.	Motor wattage of 4 axes is total of 1600W.		

* When power supply voltage is 100V, keep in mind that the maximum total wattage of axes is limited to 800W.

Option/Cable Type

Name	Туре	Remarks
Teaching Pendant	IA-T-X	Cable 1m
Teaching Pendant (with Deadman Switch)	IA-T-XD	Cable 411
PC Interface Software	IA-101-X-MW	Included cable 2m
Expansion I/O Card (32 In/16 Out) PNP	IA-103-X-32-P	Total of 2 cards (All Purpose ELL Type)
Expansion I/O Card (16 In/32 Out) PNP	IA-103-X-16-P	Total of 3 calus (All-Pulpose LO Type)
Regenerative Resistance Unit	REU-1	Included Controller Connection Cable (1m)
Battery for holding absolute data	IA-XAB-BT	integrated with case
Motor Cable	CB-XEU-MA-	Standard 5m
Encoder Cable	CB-X(C)EU-PA-	Standard 5m
Limit Switch Cable	CB-X(C)EU-LC-	Standard 5m
I/O Flat Cable	СВ-Х-РІО-ППП	Standard 2m
Expansion SIO Card	IA-105-X-MW	1 card corresponds 2ch Max 3 cards (6ch)

* $\square \square \square$ = length of cables. ex) 050=5m

PC Interface Software (for Windows)

Name and Function of Each Part

				-		
1. FG Conne	ection Termin	al This is the connection end to connect to the FG. The PE and Box are connected within the controller.	Code	Name		
2. Circuit Pro	otecter	This is the protective device for overcurrent protection of AC input.	EMG	Emergency Stop Input		
3. AC Input	Connector	This is the connector for AC100/230V single phase input (plug to the cable side is included).	ENB	Safety Gate		
4. External R Unit Conr	Regenerative nection Conn	This is the connector to connect the regenerative ector resistance unit that connects in case capacity is lacked in internal generative resistance in high speed/binb lad	RDY	System Ready Relay Output		
5. Motor Co	nnector	This is the connector for motor driver within the				
6. Axis Sens	or Connecto	r This is the connector for the sensor connection for LS, CREEP and OT.	12. I/O 24V DC Power			
7. Battery fo	r Absolute D	ata This is the battery unit for encoder backup for absolute encoder application				
8. Brake Sw	itch	This is the alternator switch with lock used to	13. Panel Window			
(only for brail 9. Axis Drive	ke specificati er Status LED	ons) release the axis brake. During usage, pull it towards you to operate. The upper position will release (RLS side) brake, and the lower position will allow controller to control. This is the LED used for monitoring movement	14. Mode Switch			
Code	Colour	Content when turned ON				
ALM	Orange	Indicates error detection in the driver area.	15. Connector for Teac			
SVON	Green	Indicates executing driver to motor during servo On status	16. PC Connection Cor			
BATT ALM	Orange	17 Standar	d I/O Connor			
			17. Stanuar			
10. Encoder	Connector	This is the 15 pin D-sub connector used to connect the actuator encoder.	18. Expansi	on I/O Conne		
11. System I	/O Connecto	This is the connector to execute I/O for two inputs that control the actuator movement and output the device status (plug is included on the cable side).	*15 & 16 cannot be use			

nergency top Input	Movement possible during ON, emergency stop during OFF.								
afety Gate Input	Movemen	t possible during ON, Servo OFF during OFF.							
System Ready Iay Output	Outputs status of main controller. Cascade connection is possible. t Ready short, not ready in open.								
Power		This is the connector that supplies insulated I/O power externally when DI, DO are mounted to the I/O of 17 & 18 (plug to the cable side is included)							
wol		Displays four character of 7 segment LED and							
ch		This is the alternator switch with lock used to instruct the movement mode of the controller. During operation, you will need to pull it towards you before operating. MANU Mode (manual) is on the top and AUTO mode (automatic) is on the bottom. Teaching operation is allowed only in MANU mode and automatic operation with external I/O is not possible in MANU mode.							
for Teach	ing*	This is the D-sub 25 pin connector used to con nect the teaching pendant or PC to input the program.							
ction Con	nector*	This is the D-sub 9 pin connector used to exe cute serial communication (RS232C) and host device in auto mode (DTE Terminal is inter changeable to PC-AT).							
O Conne	ctor	This is composed of 50 pin flat connector, and has DIQ of 32 input/16 output							
I/O Conn	ector	Connects to I/O board for expansion (option).							
ot be used	d simultane	ously.							

Content when turned ON

J Type (compact)

KE Type (All-Puropose EU)

		J Type (0	Compact)	KE Type (All-Purpose EU)			
	Feature	Compact size, reasonable	price with high performance	Superior in expansion capability			
	Model		J	KE			
	Encoder Type	Incremental	Absolute	Incremental	Absolute		
	Mximum number of Axes	1 a	ixis	4 axes			
	Total number of wattage*	800W -	<400A>	1600W <800W>			
	I/O expansion	Unava	ailable	Total of 192 points			
	Network compliance	Unava	ailable	Available			
E	lectric disconnect during emergency stop**	Semi-co	onductor	Relay			

*When power voltage is 230V. (For 100V, please refer to inside of < >.) **J Type required an external hardware circuit for EMG and ENB.

· · · · · ·										
	J Type (Compact)	KE Type (All-Purposé EU)								
Model Type	J	KE								
Control number of axes	AXIS T	AXIS I AXIS Z AXIS 3 AXIS 4								
Connecting axis output	Max 400W (Power voltage 230V)	Max 800W Max 800W (Power voltage 230V)								
Weight	2.6kg	6.0kg 7.0kg								
Power voltage	Single phase AC 100 ~115/200-230 (set	ing done at the time of factory shipment)								
Power voltage range	er voltage range ±10%									
Power frequency	50 Hz	/60 Hz								
Power draw	Max 830VA	Max 830VA Max 1570VA Max 2310VA Max 3050VA								
Ambient temperature range	0°C ~	40°C								
Ambient numidity range	30% - 10°C	- 85%								
Axis control method	are range -10°C ~ 65°C									
Axis oblition method	17 bit incremental encod	er (minimised cable type)								
Position detection method	17 bit multiple rotational data backup absolute encoder (mir	imised cable type) (Control resolution 14 bit for both types)								
Battery for absolute	ER3V Tosh	iba Battery								
Speed setting	1mm/sec ~ 2	2000mm/sec								
Acc./Dec.setting	0.01G ~ 1G (depend	ds on axis structure)								
Program language	Super SEL	Language								
Program step	2000 ste									
Number of positions	3000 positi	IONS (TOTAI)								
Multi-task	04 pro 16 pro	grams								
Memory capacity	FLASH ROM+SRA	M hattery hachun								
Data input method	Teaching Pendar	t or PC Software								
Standard input	32 points (Exclusive in	nout + user input total)								
Standard output	16 points (Exclusive out	put + user out put total)								
Total I/O (STD/EXP)	48 (48/0)	192 (48/144)								
Serial communication	Expansion System	Expansion System I/O Board (option)								
Other I/O	Emergency stop input, Safety g	ncy stop input, Safety gate input, System ready output								
Protective function	Motor excessive current, Excessive load, Motor Encoder breakage detection, Excessive soft I	, Excessive load, Motor driver temperature check, Excessive load check, stection, Excessive soft limit, System abnormality, Battery abnormality								
Regenerative resistance	Built-in (1kΩ20W) Outer expansion is available (Regenerative resistance Unit option)	Built-in (220Ω80W) Outer expansion is available (Regenerative resistance unit ontion)								
Accessory	I/O fla	t cable								
Ontion	Teaching Pendant, PC Software, Battery Unit for A	bsolute, Expansion I/O Card, Expansion SIO Card								
option	Network Card, and Rege	eneraive Resistance Unit								
	Possible Connecting Actuators External Device	Teaching Pendant PC Software								
	Standard Type IS Series Solenoid value									
	Dust Resistant Type ISD Series Touch panel	PERSONAL								
	Anti-Static Type ISD-CR ESD PLC	I/O Flat Cable 2m								
	Small Type DS Series	(Attached to the controller)								
	High Rigidity Belt Type IF Series	a uzzal								
	Slim Belt Type FS Series									
Regenerative Unit	Rotaung Axis Type R5 Series RoboCylinder	R\$232 Cable 5m								
		(Attached to PC Software) · DeviceNet · CC-Link								
Mo	tor cable Standard 5m I I	System I/O Sorial Communication Unit								
	ached to the actuator) AC Power I/	D Power • Emergency stop • Enable • Expansion SIO Card								
126	Single phase AC100V Di Single phase AC230V	• System ready RS232C/RS422/RS485								
Regenerative L This unit changes the when the motor decel	Jnit REU-1 Standard Regen regenerative current which is generated Unit Setting erates into heat. Unit Setting	erative The number of regenerative units are decided by the total wattage of the motors connected to the controller.								
Dimension	W34mm X H195mm X D126mm Z Axis	Motor KE Type (All-Purpose FLI) L Type (Compact)								
Weight	0.9kg	attage Net personal Net personal								
Drogramani	0~2	Not necessary Not necessary Not necessary Not necessary								
resistance	220 / 80W ~ 60	0W Need 1 Need 1								
resistance	~ 80	0W Need 1 Need 2								
Accessory	Controller connection cable ~ 120	00W Need 2 -								
,	(Type CB-ST-REUUTU) TM ~ 160									

External Input and Output (I/O)

Standard X-SEL Controller has 32 inputs and 16 outputs. The All-Purpose EU type can have a maximum of 192 inputs and outputs by adding the expansion I/O cards, (The Compact Type can't be expanded). The I/O card comes in 32 inputs and 16 outputs or 16 inputs and 32 outputs. Select one according to your needs. The first slot must be 32 inputs and 16 outputs.

X-SEL

I/O Signal Switching Function

Assigned function of each I/O port can be changed by the parameters. For example, all inputs and outputs can be set to user I/O and exclusive function assigned to each port can be also selected (The standard I/O signal chart of the next page is the standard setting at the time of shipping).

External Input and Output Specification

To use I/O, 24 V DC power source is required. Supply 24 V to pin1 and pin 50 of the I/O on J Type. Supply 24V DC to the I/O power source connecter on the KE Type. Refer to specification and circuit below.

			-			
0.	Section	Port No.	Function	Pin No.	Section	Po
		-	All-Purpose EU:NC; Compact:+24V input	1		
		000	Program start	2		
		001	User Input	3		
		002	User Input	4		
		003	User Input	5		

Standard I/O Signal Chart

Expansion I/O Signal Chart Expansion I/O Signal Chart

Pin No.	Section	Port No.	Function	Pin No. Section Port No. Port No. Content		1	Pin No. Section Port 1		Port No.	Port No. Content			
1		-	All-Purpose EU:NC; Compact:+24V input		1		-	NC		1		-	NC
2		000	Program start		2			User Input		2			User Input
3		001	User Input		3			User Input		3			User Input
4		002	User Input		4			User Input		4			User Input
5		003	User Input		5			User Input		5			User Input
6		004	User Input		6			User Input		6			User Input
7		005	User Input		7			User Input		7			User Input
8		006	User Input		8			User Input		8			User Input
9		007	PRG 1 Input		9			User Input		9	Input		User Input
10		008	PRG 2 Input		10			User Input		10			User Input
11		009	PRG 4 Input		11			User Input		11			User Input
12		010	PRG 8 Input		12			User Input		12			User Input
13		011	PRG 10 Input		13			User Input		13			User Input
14		012	PRG 20 Input		14			User Input		14			User Input
15		013	PRG 40 Input		15			User Input		15			User Input
16		014	User Input		16			User Input		16			User Input
17	Input	015	User Input		17	Input		User Input		17			User Input
18	· ·	016	User Input		18			User Input		18			User Input
19		017	User Input		19			User Input		19			User Input
20		018	User Input		20			User Input		20			User Input
21		019	User Input		21			User Input		21			User Input
22		020	User Input		22			User Input		22			User Input
23		021	User Input		23			User Input		23			User Input
24		022	User Input		24			User Input		24			User Input
25		023	User Input		25			User Input		25			User Input
26		024	User Input		26			User Input		26			User Input
27		025	User Input		27			User Input		27			User Input
28		026	User Input		28			User Input		28			User Input
29		027	User Input		29			User Input		29			User Input
30		028	User Input		30			User Input		30			User Input
31		029	User Input		31			User Input		31			User Input
32		030	User Input		32			User Input		32			User Input
33		031	User Input		33			User Input		33			User Input
34		300	Alarm output		34			User Input		34	Output		User Input
35		301	Ready output		35			User Input		35			User Input
36		302	Emergency stop output		36			User Input		36			User Input
37		303	User Input		37			User Input		37			User Input
38		304	User Input		38			User Input		38			User Input
39		305	User Input		39			User Input		39			User Input
40		306	User Input		40			User Input		40			User Input
41		307	User Input		41			User Input		41			User Input
42	Output	308	User Input		42	Output		User Input		42			User Input
43		309	User Input		43			User Input		43			User Input
44		310	User Input		44			User Input		44			User Input
45		311	User Input		45			User Input		45			User Input
46		312	User Input		46			User Input		46			User Input
47		313	User Input		47			User Input		47			User Input
48		314	User Input		48			User Input		48			User Input
49		315	User Input		49			User Input		49			User Input
50		-	All-Purpose EU:NC; Compact:0V		50		-	NC		50		-	NC

Pins No. 1 and 50 are not used in All-Purpose EU type. For compact type, connect +24V to Pin No.1 and 0V to Pin No. 50.

External Dimensions

Cables

Motor and encoder cables are included with the purchase of both actuator and controller together. Controllers include I/O and power cables. For purchasing

Wiring

Flat

Cramr

Cablo

X-SEL

The connectors below have connection plugs on the controller's side. Cables need to be wired by the customer.

AC Power Source Input Connecter

This connecter is for AC 100V/230V power source (Cable is not included.)

System I/O Connecter

This connecter is for supplying power to the emergency stop, enable, and system ready terminals from the controller to PLC, etc. (Cable is not included.)

I/O Power Source Connecter

This connecter is for supplying 24 V DC power source when using I/O at the controller. (Cable is not included.)

New generation controller X-SEL

Some of the new features unique to the X-SEL controller include the following:

- Absolute encoders
- Highspeed multi-tasking
- synchronous drive control
- Infinite motion
- Expansive I/O
- Network capability
- Push function
- Enhanced safety
- Enhanced Serviceability

XSEL Series Catalogue No. 0502-E

Providing quality products since 1986

IAI Industrieroboter GmbH Ober der Röth 4 D-65824 Schwalbach am Taunus Tel.: +49-6196-8895-0 Fax: +49-6196-8895-24 E-Mail: info@IAI-GmbH.de Internet: http://www.IntelligentActuator.de

 IAI America Inc.

 2690 W. 237th Street, Torrance, CA 90505

 U.S.A

 Tel.: +1-310-891-6015

 Fax: +1-310-891-0815

 Printing in Germany 5/02

IAI CORPORATION 645-1 Hirose, Shimizu-City, Shizuoka 424-0102 Japan Tel.: +81-543-64-5105 Fax: +81-543-64-5182