www.actuator.ru тел.:(495) 662-87-56, e-mail: iai@actuator.ru

www.actuator.ru тел.:(495) 662-87-56, e-mail: iai@actuator.ru

New Generation Controller strives for Convenience

The next generation of controllers with the performance far exceeding the previous models are finally here.
The dynamic performance \& basic software package (SEL Language) are greatly improved with more commands, a greater program data capacity, and improved safety and maintainability.

www.actuator.ru тел.:(495) 662-87-56, e-mail: iai@actuator.ru

Compact Type with Limited Function

Compact Type: 1 Axis

Features Dedicated I/O

All-Purpose EU Type with Advanced Function

All-Purpose EU Type: 1 Axis

All-Purpose EU Type: 2 Axes

All-Purpose EU Type: 3 / 4 Axes

Features Expandable I/O

1 Axis Actuator Actuators corresponding to the X-SEL

ISP $\begin{aligned} & \text { High Speed \& Accuracy } \\ & \text { Maximum Stroke Length th } 2,500 \mathrm{~mm} \\ & \text { Maximum Horizontal Payload } 150 \mathrm{~kg}\end{aligned}$
 Maximum Stroke Length $1,600 \mathrm{~mm}$
Maximum Horizontal Payload 150 Maxim velocity 2 .000 mm/ sec

 Maximum Stroke 2,500mm.
Maximum Horizontal Payload 80 kg
Maximum Velocity 1, comm $/ \mathrm{sec}$.

IS $\begin{aligned} & \text { Dust Shield Type } \\ & \text { Maximum stroke }\end{aligned}$ Maximum Stroke Length 1.600 mm
Maximum Horizontal Payload 80 k Maximum Horizontal Payload 80kg
Maximum velocity $1,000 \mathrm{~mm} / \mathrm{sec}$
ISD-CR

Clean Room Type
Class 10 Compliance
Maximum Stroke Length $1,200 \mathrm{~mm}$
Maximum Horizontal Payload Maximum Horizontal Payload 80 kg
Maximum Velocity $1,1000 \mathrm{~m}$

IF High Rigidity Base Structure
High Rigidity Base Structure
Belt Drive Type Actuator
lex Maximum Stroke Length 2.500 mm
Maximum Horizontal Payload 40 kg
Maximum Vel Maximum Horizontal Payload 40
Maximum Velocity $1,750 \mathrm{~mm} / \mathrm{sec}$

BS
Dynamic System Compact Type Maximum Stroke Length 600 mm Maximum Horizontal Payload 12 kg
Maximum Velocity $800 \mathrm{~mm} / \mathrm{sec}$

Robs
Cylinder
So
Many RCS actuators are compatible with
 pensive, interpolated motion. RCP or RCS
actuator may bused with the x-GEL
using discrete I/O. using discrete //o.

The single-axis actuators above may be combined in a multitude of multi-axis configurations.

2 Axes Configuration

Configuration Example

The overall length of the IS/ICS series is slightly different for the SEL E/G controller and X-SEL controller specifications. When
using the X-SEL Controller, please refer to the is catalogue for x-GEL.

3.4 Axes Configuration

Configuration

 Example

For additional configurations, plea
Intelligent Actuator representative
www.actuator.ru тел.:(495) 662-87-56, e-mail: iai@actuator.ru

New Features

Since the introduction of our first Single Controller in 1986, Intelligent Actuator, Inc., has pursued innovation in speed, power, safety and serviceability. The high performance X-SEL controller is the culmination of 15 years of technological advancement.

All-in-one controller with newly developed digital senvo driver.

A newly developed digital-servo driver is used in conjunction with a 17-bit serial encoder. Compared to the previous models (E/G Type), acceleration and deceleration of the velocity function is improved drastically which shortens tact time.

Work efficiency is improved with absolute encoders
Since the 17 bit absolute encoder data has battery back-up, homing is not required fter power up or when it recovers from an emergency stop. This option increases efficiency and productivity by reducing start-up and recovery time.

All control boards and components are easily accessible.

Expansion I/O cards can be inserted in seconds, and the source of any trouble quickly diagnosed.

Enhanced safety features and CE certification.

X-SEL Controller System has protection for external equipment following RAS(Reliability • Availability Serviceability) guidelines. The safety function is enhanced by improving emergency stop and motor
drive power shut off functionality when an error occurs.

Incremental

Increased PATH Speed \& Accuracy

Due to the increased processing speed of the controller, the locus accuracy is greatly improved
Moreover, the speed of a path and a circle are faster with greater accuracy for dispensing.

www.actuator.ru тел.:(495) 662-87-56, e-mail: iai@actuator.ru

New Functions

With improved movement performance in acceleration/deceleration, locus accuracy, and new functions such as synchronised axis operation, infinite stroke movement, push mode, and zone signal, the X-SEL can be used

for various applications.

Synchro Operation

2 axis synchronous motion can handle payload which was not possible with single axis. Also it allows a longer Y axis for the gantry type.

Zone Signal

The zone signal is the function that can output a signal when a slider moves inside a zone defined by the user. This function is convenient for interlocking and timing with peripherals devices. The maximum setting points are 4 (4 zones) for each axis.

Push Movement

It can continue to push a slider against a load like an air cylinder. You can use it for pushing parts, clamping, press fitting, etc. Since a signal can be output when it pushes against parts, distinction of work loads is possible.

Infinite Stroke Operation

By using the jog function, you can move infinitely in one direction like a conveyer.

Infinite rotation is possible

Program Data Memory is Increased

Program step number is 6,000 steps (Top level class). Point number is 3,000 positions.
Since a maximum of 16 programs can be multi-tasked simultaneously, complex control is possible.

72 new Commands are added to the Program. E/G Type 111 Commands -> X-SEL 186 Commands

The Super SEL Language has a reputation for making complicated control easy. New commands are added to the program.

Example

- Palletise Commands • Arch Motion Commands
- Spline Commands and more

[^0]www.actuator.ru тел.:(495) 662-87-56, e-mail: iai@actuator.ru

Upgraded Function - Path Operation

Various kinds of path movements including 3D path movement are available.

3D Path Movement

P20 Ending Position

Command	Operation 1	Operation 2
PATH	P1	P20

Regardless of number of points, Path command uses only one line.
t can complete continuous motion from the designated start position (ex. P1) to end position (ex. P20) without stopping.
Dispensing on a complicated shape is as simple as designating the start position No. and the end posidesignating the start position No. and the end posiutively in the point table. Path movement can be 3D, therefore, dispensing operation of 3D objects is postherefore, dispensing operation of 3D objects is pos sible. Moreover, since the processing speed of the ontroller is much faster, the velocity and locus accudate more complex shapes.

Spline Movement

Moves continuously from the designated base posi tion to the ending position via spline interpolated curved motion.

3D Arc Motion

You can easily execute arc motion by simply selecting 2 conditions using the following commands

CIRS

Circle movement (3-dimensional movement) that passes along the passage positions 1 and 2 in order with the pre sent position as the starting point is performed.

ARCS

passes along a passage position with the present position as the starting point, and arc movement (3-dimensional movement) to an end position is performed.

PRDQ

It reads into the variable, which specified the present position of axial No. specified by operand 1 by operand 2 . The present position is acquirable from a PRED command at high speed.

Arc Motion

CIR, CIR2

Executes circular motion from the current position and passing through positions 1 and 2 .

ARCC

Executes arc motion from the current position based on the designated centre angle and with a designated centre position as the radius

ARC, ARC2
Execute arc motion from the current position passing through positions 1 and 2 .

ARCD

Executes arc motion from the base position to a designated ending position based on the centre angle.

Ending Position

Super SEL Language Exceptional Control, and Simplicity!

Super SEL Language which allows advanced control with simple program has been improved. New function such as palletise command, virtual ladder task and spline command are added to X-SEL controller. The result is an increase in the number of commands from 111 to 186 and using the Super SEL Language has become even easier

What is Super SEL Language?

Super SEL Language is the simplest language among the many robot languages. Super SEL Language solves difficult problems, achieving advanced control using simple expression.

The flow chart below is one example.

BASIC Language requires 3 steps.

Step	Label	Command
1		IF(600) $=1$ THEN NEXT
2		MOVE P10
3		DOUT(310) $=1 \mathrm{~B}$
4	NEXT	The following operation command

Comparison to Previous Model (E/G Type)

X-SEL's programming related function and spec are improved dramatically compared to the previous model (E/G Type).

Global is used in all programs.
Local is used in each program.

Introduction of New Function
Virtual Input/Output Port
System information can be output by SEL Program.
ex) Port No.7002: Controller back up battery low voltage warning.

No.	${ }_{\substack{\text { mput Condition } \\ \text { (Cno) }}}^{\text {and }}$	${ }_{\text {coma }}^{\substack{\text { Command } \\ \text { (Cmad) }}}$	$\left.\begin{array}{\|c} \hline \text { Operation } \\ \text { (Operand 1) } \end{array}\right)$	$\begin{gathered} \text { Operation 2 } \\ \text { (Operand 2) } \end{gathered}$	$\xrightarrow[\substack{\text { Output } \\ \text { (stit }}]{\text { ate }}$	Comment
	7002	BTON	301			

By executing above step, output 301 turns on when back up battery is low.

Symbol Definition

You can name various symbols in the program with X-SEL Controller. Thus it is easier to understand the program.
*Maximum 9 small letters of alphabet and number.
Symbolised Sign
: Variables (Integers and real number), Flag No, Input and Output Port
No.,Program No., Tag No., Subroutine No., Position No., and Axis No..

No.	${ }^{\text {Imput Condition }}$ (Cind)	${ }_{\text {command }}^{\text {Comal }}$	(operand 1)	(\%peration ${ }^{\text {(1) }}$	(Pst)	Comment
1		BTOF	complete			Positioning complete signal tums
2		MOVP	waitpoint			It moves to a waiting point
3		втол	complete			Signat ums on anter the completion of move
4		MOVP	supplypt			It moves to a supplying point
5						

www.actuator.ru тел.:(495) 662-87-56, e-mail: iai@actuator.ru

New Commands for Palletising

Palletise Commands were added to make palletising easie
The Palletising is set by designating palletise points (work payload position, order, etc.) and executed by using movement commands. You can set-up 10 palletising pattem (Pallet No.1~10) in 1 program.

Palletise Pattern Setting

You can select the pattern for palletising.

Palletise the Number of

 Setting points

3 Point Teaching

You can set up a pallet just by teaching 3 points The first point i the base point, the second is the and point in the X axis direction, and the third is the end point in the Y axis direction. Pitch is automatically calculated from the setting of each axis. Setting of 3 point teaching is also possible in XYZ 3D plane.

Arch Motion

When you execute palletising or pick \& place using Z axis, this function moves X $\& Y$ axes before the Z axis reaches the point, thereby reducing moving time. You can change the beginning point and the ending point of the arch by arch trigger setting.

Movement Commands

PMVP Executes PTP (Point to Point) movement to computed palletise point. PACH Executes arch motion from the current position to the selected palletise point.

*Sample Program *

Step No.	$\begin{array}{\|c\|c\|} \hline \text { Expansion Condition } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { Imput Condition } \\ \text { (Cnd) } \end{array}$	$\begin{aligned} & \hline \text { Command } \\ & \text { (Comnd) } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Operation } 1 \\ \text { (Operand 1) } \end{array}$	$\begin{array}{\|l\|} \hline \text { Operation 2 } \\ \text { (Operand 2) } \end{array}$	$\begin{gathered} \text { Output } \\ \text { (Pst) } \end{gathered}$	Comment
1			BGPA	1			Palette No. 1 setting start
2			PASE	1	2		Set palletise axis
			PAPI	5	5		Set palletise numbers
4			PAPN	1			Set palletise pattern
			PAPT	20	20		Set palletise pitch
6			EDPA				Palette No .1 setting completion
7							
8			HOME	11			returns home
			VEL	500			Set velocity $500 \mathrm{~mm} / \mathrm{sec}$
10			TAG	1			GOTO jump place of Step 17
11			MOVL	1			Moves to position 1 (supplying point)
12			PMVL	1			Moves to a palletise position
13			PINC	1			One advance about palletise position No. 1
14			PTNG	1	1		Acquires current palletise position
15			CPGE	1	25	900	When palletise position reaches 25 , output flag
16		900	PSET	1	1		Returns to position 1 after reaches position 25
17			Gото	1			J umps to TAG 1 of step 1

www.actuator.ru тел.:(495) 662-87-56, e-mail: iai@actuator.ru

New Command - Virtual Ladder Task

The Ladder Task used by the PLC can be executed by the Super SEL Language.
The program structure is similar to ladder logic, so, it's easy to convert from a ladder sequence.
Caution: Since this program is a software ladder which uses an interpreter, processing time is much slower compared to a PLC Therefore, it's not suitable for large scale ladder processing

X-SEL supports And and Or Block logic which is essential to program complicated circuitry requiring multiple conditions
expressed in X EL ladder command structure as shown below.

Ladder Task

Command	Common PLC Command
LD	ANB or AND LD
OB	ORB or OR LD

X-SEL Ladder Command

Command	Common PLC command
LD	LOAD
A	AND
O	OR
OUTR	OUT

No.	$\begin{array}{\|l\|l\|} \hline \text { Expansion Condtion } \\ (E) \\ \hline \end{array}$	N	$\begin{array}{\|c\|} \hline \text { Imput Condition } \\ \text { (Cnd) } \end{array}$	$\begin{gathered} \hline \text { Command } \\ \text { (Cmnd) } \end{gathered}$	$\begin{aligned} & \hline \text { Operation } 1 \\ & \text { (Operand 1) } \\ & \hline \end{aligned}$	Operation 2	$\begin{gathered} \substack{\text { Output Port } \\ \text { (Pst) }} \end{gathered}$
1	LD		0				
2	A		1				
3	-		300				
4	A	N	3				
5	A	N	301				
6	LD		3	OUTR	300		
7	A		2				
8	o		301				
9	A	N	0				
10	A	N	300	OUTR	301		
11							
12							
13							
14							

Super SEL Language Main Command Chart

X-SEL

There are 186 commands in Super SEL Language and all of those commands have symbols related to the meaning. grams using various commands.

Actuator control declaration
Command Function VEL Set velocity OVRD Set velocity ratio ACC Set acceleration DCL Set deceleration SCRV Set S-⿰亻otion ratio OFST Set offset DEG Set angle of division BASE Set base axis GRP Set group axis HOLD Hold port CANC Cancellation VLMX Set VLMX velocity DIS Set spline POTP Set PATH output type PAPR Set push QRTN Quick return mode

Actuator control command	
SVON	Servo on
SVOF	Servo off
home	Home
MOVP	Move to designated position
MOVL	Interpolated move to designated position
MVPI	Incremental move to a position
MVLI	Incremental interpolated move to a position
PATH	Path movement
CIR	Circular movement
ARC	Arc movement
JBWF	J og backward at input off
JBWN	J og backward at input on
J FWF	J og forward at input off
JFWN	J og forward at input on
STOP	Axis slows to a halt
PSPL	Spline move
PUSH	Push move
CIR2	Circular movement 2
ARC2	Arc movement 2
CHVL	Velocitry change
ARCD	End position designated arc movement
ARCC	Centre position designated arc movement
PBND	Set positioning range
CIRS	3D circular movement
ARCS	3D arc movement

Program control	
GOTO	Jump
TAG	Declarare jump target
EXSR	Execute subroutine
BGSR	Begin subroutine
EDSR	End subroutine

Position command

Command	Function
PGET	Assign position to variable 199
PPUT	Assign value of variable 199
PCLR	Clear position data
PCPY	Copy position data
PRED	Read current position of axis
PTST	Confim position data
PVEL	Assign position velocity
PACC	Assign position acceleration
PDCL	Assign position deceleration
PAXS	Read axis pattern
PSIZ	Check position size
GVEL	Acquire velocity data
GACC	Acquire acceleration data
GDCL	Acquire deceleration data
PRDQ	Read current position of designated axis

Input/output flag operation	
BTON	Output port. Flag on
BTOF	Output port. Flag off
BTNT	Output port. Flag reverse
WTON	Input \& Output port. Wait flag on
WTOF	Input \& Output port. Wait flag off
IN	Binary input
INB	BCD input
OUT	Binary output
OUTB	BCD output
BTPN	ON pulse output
BTPF	OFF pulse output

Timer	
TIMW	Timer
TIMC	Cancel timer
GTMM	Acquire time

Task control	
EXIT	Exit program
EXPG	Execute program
APBG	Stop other program
SSPG	Pause program
RSPG	Restart program

	k construction
TPCD	Designate a process when input conditions
CHPR	Change task level
TSLP	Task sleep
OUTR	Output relay for a ladder

Variable

Command	Function
LET	Assign
TRAN	Copy
CLR	Clear variables

Arithmetic calculation

ADD	Add
SUB	Subtract
MULT	Multily
DIV	Divide
MOD	Remainder

Functional calculation

SIN	Sine
COS	Cosine
TAN	Tangent
ATN	Arctangent
SQR	Square root

Logical calculation

Logical calculation		
AND	Logic and	
OR	Logic or	
EOR	Exclusive logic	

Comparison

Comparison	
CPEQ	Compare equal
CPNE	Compare not equal
CPGT	Compare greater than
CPGE	Comparealer equal
CPLT	Compare less or equal
CPLE	

Command	Function
ARCH	Arch motion
ACHZ	Arch motion Z axis declaration
ATRG	Set arch triger
OFPZ	Set palletise Z axis offset
BGPA	Declare the start of palletise setting
EDPA	Declare the end of palletise setting
PASE	Set palletising axis
PAPT	Set palletising pitch
PAPI	Set palletising No.
PAPS	Set palletising points (3 points teaching)
PAPN	Set palletising pattern
PSLI	Set zig-zag
PCHZ	Set the palletising Z axis
PACH	Arch motion at the palletising points
OFAZ	Set the Z axis offset value of arch motion
PMVP	PTP move to palletising points
PMVL	Move between the palletising points
PTNG	Acquire palletising position No.
PING	Calculate the palletise position No. +1
PDEC	Calculate the palletise position No. -1
PSET	Direct set of the palletising position No.
PAPG	Acquire palletising calculation data
PTRG	Set arch trigger of palletising
PEXT	Set palletising combination
AEXT	Set arch motion combination
PARG	Acquire palletising angle
PAST	Set the base point of palletising

System information and acquisition

AXST	Acquire axis status
PGST	Acquire program status
SYST	Acquire system status

Communication

OPEN	Open channel
CLOS	Close channel
READ	Input from channel
WRIT	Output to channel
SCHA	Set ending character
TMRD	Set the value of READ time out

String operation

SCPY	Copy strings
SCMP	Compare strings
SGET	Acquire strings
SPUT	Set strings
STR	Decimal conversion of strings
STRH	Hexaecimal conversion of strings
VAL	Decimal conversion of data in strings
VALH	Hexadecimal conversion of data in strings
SLEN	Set length

www.actuator.ru тел.:(495) 662-87-56, e-mail: iai@actuator.ru

RAS

X-SEL employs control, driver, and power units RAS to protect the controller.

RAS Control Unit

When the system starts up, it reads various device structure information stored in the controller and checks the adjustments of hardware and parameters.
You can check various errors detected by the main CPU from the teaching pendant and the PC software.

RAS Driver Unit

This system can shut off motor driver power for safety through hardware or software according to various conditions.
(emergency stop input from outside, internal system error, encoder disconnection, etc.)

RAS Power Source Unit

RAS checks for heating up of switching the power source and the over heat of the regenerative resistance, AC power input voltage abnormality, motor driver power voltage abnormality, etc. and shuts off motor and commands an emergency stop to the driver
When the power is turned ON, it checks emergency stop relay contact. If there are problems, the system will not operate.

Other Function

Holds more than 700 error messages
The number of error messages has increased and it makes troubleshooting faster and more accurate compared to the E/G Type Controller.

Stores Maximum of 50 Error Message History
Maximum of 50 error message history with related information can be stored and this would help solve problems faster and make operation more efficient.

I/O Processing Program during All Operation Stop
The I/O processing program which starts up when emergency stop or operation pause signal is input, is added.

Emergency ABS-> INC Switching Function
When the data battery is gone while using absolute type, it would able to be used as
incremental type by adjusting the parameters.
System Error Output By Virtual Input/Output Port
By setting virtual input port which indicates error occurrence classified by level, you can output output occurrence. You can also output error contents of each axis and program by using SEL language commands.

Network

Recently, Network Systems are widely used with less wiring and data communication. X-SEL Controller corresponds to domestic and international main network systems.

Various Network specification

	DeviceNet	CC-Link	PROFIBUS
Communication Standard	DeviceNet 2.0 Group 2 Only Server	CC-Link Ver. 1.10 Remote device station Remote I/O station	PROFIBUS-DP Ver. 1.10 Slave
Communication Speed	500K/250K/ 125K band	10M/5M/2.5M/ 625K/156Kbps	$\begin{gathered} \text { 12M/1.5M/ } \\ 500 \mathrm{~K} / 187.5 \mathrm{Kbps} \end{gathered}$
Transmission Distance	100m/250m/500m	$100 \mathrm{~m} / 160 \mathrm{~m} / 400 \mathrm{~m} /$ $900 \mathrm{~m} / 1200 \mathrm{~m}$	$\begin{gathered} 100 \mathrm{~m} / 200 \mathrm{~m} / 400 \mathrm{~m} \\ 1000 \mathrm{~m} \end{gathered}$
Power	Supply from DeviceNet side (24V)	Supply from X-SEL Controller	Supply from X-SEL Controller
1/O Points(1 card)	Input 256 points(Max) Output 256 points(Max)	Input 256 points(Max) Output 256 points(Max)	Input 256 points(Max) Output 256 points(Max)
Max Card Installation	1	1	1

Network Corresponding Model Type

	Controller Type	Network /O Point	Standard Slot	Expansion Slot 1	Expansion Slot 2	Expansion Slot 3	Type
DeviceNet	E Type	256/256	-	${ }^{1 *}$	${ }^{1 *}$	1^{*}	XSEL-KE-D-D-D-D
CC-Link	KE Type	256/256	-	${ }^{1 *}$	${ }^{1 *}$	${ }^{1 *}$	XSEL-KE-O-a-C-a
PROFIBUS	KE Type	256/256	-	1^{*}	${ }^{1 *}$	1*	XSEL-KE-D-a-R-D

[^1]
www.actuator.ru тел.:(495) 662-87-56, e-mail: iai@actuator.ru

Substantial Debug Function - PC Software

This start up supporting software makes programming, setting position input, testing of axes, and monitoring of input \& output signals of the controller possible. By adding debug functions such as step by step tracing and break point functions, it makes debugging more efficient.

- You can open several windows and operate them at the same time
- When the program is running, the current steps are classified by 3 colours making easy to check program status (Steps are classified by blue, red and green according to status).
- You can execute the program step by step (Step Execution Function).
- You can pause the program at an arbitrary position (Break Point Function).

Program Edit Window

- You can do direct value input, jog movement, incremental movement and obtain the current position or obtain current position from manual operation with the SERVO OFF in the position edit window.

Position Edit WIndow

- You can monitor Input \& Output Ports, Flags, Integer Variables, Real Number Variables, and Axis status in the monitor window.

Monitor Window

www.actuator.ru тел.:(495) 662-87-56, e-mail: iai@actuator.ru

Option

Teaching Pendant

Controller

XSEL-KE-3-20A-10A-06IBL-P-EEE-2

$\underset{\substack{\text { 8. Expansion Slots (Slot 2, 3, 4) } \\ \text { E. Not used }}}{\text {) }}$

Type simplified chart

KE Type (all-purpose EU type)					
	1Axis	2 Axes	3Axes	4 Axes	
Absolute	XSEL-KE-1-DA	XSEL-KE-2-पA-DA	XSEL-KE-3-DA-DA-पA	XSEL-KE-4DA-DA-DA-DA	
Incremental	XSEL-KE-1-पI	XSEL-KE-2-미-ᄆI	XSELE-KE-3-미-미-미	XSEL-KE-4-미-미-미-[\|I	
Remarks	Motor wattage of 1 axis is $30 \sim 750 \mathrm{w}$.	Motor wattage of 2 axes is total of 1600 W .	Motor wattage of 3 axes is total of 1600 W .	Motor wattage of 4 axes is total of 1600 W .	

*When power supply voltage is 100 V , keep in mind that the maximum total wattage of axes is limited to 800 W .

Option/Cable Type

Name	Type	Remarks
Teaching Pendant	IA-T-X	Cable 4m
Teaching Pendant (with Deadman Switch)	IA-T-XD	Cable 4m
PC Interface Software	IA-101-X-MW	Included cable 2 m
Expansion I/O Card (32 In/16 Out) PNP	1 A-103-X-32-P	Total of 3 cards (All-Purpose EU Type)
Expansion I/O Card (16 In/32 Out) PNP	A 4 -103-X-16-P	Total of 3 Cards (Al-Purpose EU Type)
Regenerative Resistance Unit	REU-1	Included Controller Connection Cable (1m)
Battery for holding absolute data	IA-XAB-BT	integrated with case
Motor Cable	Cb-XEU-MA-70]	Standard 5m
Encoder Cable	CB-X(C)EU-PA-70]	Standard 5m
Limit Switch Cable	Cb-x(C)EU-LC--70	Standard 5m
I/O Flat Cable		Standard 2 m
Expansion SIO Card	IA-105-x-MW	1 card corresponds 2ch Max 3 cards (6ch)

[^2]

KE Type (all-purpose EU typ

Mode

Feature

IA-T-X (standard)
IA-T-XD (features deadman switch)

- This has program / position input, test

Expansion I/O Board (PNP)

Model IA-103-X-32-P (32 input points / 16 output points) IA-103-X-16-P (16 input points / 32 output points)

- This board is for expansion of $1 / 0$
- Special design accommodates easy expansion, simply remove the cover and are $1 / \mathrm{C}$ cards.
- All-Purpose EU Type accommodates up to 3 expansion boards, totaling 192 inputs/outputs

Battery for Absolute Data

Model

Feature

Specification

IA-X-BT

- This is the data back up battery for the absolute encoder application Exchange the battery when the controller displays the battery alarm signal.

Battery and case are integrated into a single unit.
www.actuator.ru тел.:(495) 662-87-56, e-mail: iai@actuator.ru

1. FG Connection Teminal
2. Circuit Protecter
3. AC Input Connector
4. Extemal Regenerative

Unit Connection Connector
5. Motor Connector

6 Axis Sensor Conector
7. Battery for Absolute Data
8. Brake Switch
(only for brake specifications)
(only for brake specifications)

Code	Colour	Content when turned ON
ALM	Orange	Indicates error detection in the driver area.
SVON	Green	Indicates executing driver to motor during servo On status
BATT ALM	Orange	Indicates battery voltage drop of battery for absloute

Encoder Connector	This is the 15 pin D -sub connector used to connect the actuator encoder.
11. System /o Connector	This is the ornector to execute $1 / \mathrm{O}$ for two inputs
	that control the actuator movement and output device status (plug is included on the cable sid

J Type (compact)
3. 5. 10. 13. 11.

6. 1. 7. 17

This is the connection end to connect to the FG. The PE and Box are oonected within the contoin This is ite protective device for overcurent
protection of $A C$ input. protection of AC input
This is the connector for AC 100/230V single phase innut (thug to the cable side is included).
This is the connectorto connect te This is the connector to connect the regenerative
resistance unit that connects in case capacity is resistance unit that connects in case capacitiy is
lacked in intemang generative resistance in high
speedraigh load speed/high hood.
This is the conne
actuator.
 LS, CREEP and OT.
This is the battery unit for encoder backup for absolute encoder application.
This is the atemato suitch This is the a atemator switch with hock used to
release the axis brake. Duning usae us towards you to opeorate. The upper position wil

Code	Name	Content when turned ON
Emg	Emergency Stop Inp	Movement possible during ON, emergency stop during OfF.
enb	Safety Gate Inpu	Movement possible during ON, Sevo OFF during OFF.
RDY		Outputs status of main controller. Cascade connection is possible. Ready short, not ready in open.

12. IIO 24 V DC Power

This is the connector that supplies insulated I/
power extemally when DI, DO are mounted to power exterally when DII, DO are mounted to
the //O of $17 \propto 18$ (plug to the cable side is
included) included.).
inisplays Displays four character of 7 segment L LED and
five LED lamps, which indicate device status. five LED lamps, which indicate device status.
This is the atemator svitch with lock used to
instruct the movement mode of the controller. instruct the movement mode of the controller
During operation you will need to pull it towars
you before operating MANu Mod During operation, you will need to pull it towards
you before operating MANU Mode manual is
on the top and ATOO mode (automatic) is on on the top and AUTO mode (automatic is on
the bottom. Teaching operation is allowed only
 extemal IOO is not possibl in MANU mode.
This is the D-sub 25 pin connector used to con This is the D--sub 25 pin connector used to con
nect the teaching pendant or PC to input the net.
program.
This is the This is the D -sub 9 pin connector used to exe
cute serial communication (RS232C) and host cute serial communication (RS232C) and host
device in auto mode (©TE Teminal is inter Changeable to PC-AT).
This is composed of 50 This is composed of 50 pin flat
has 10 of 32 input/16 output. Connects to $/ 0$ o board fore fext.
18. Expansionvo Conector
*15 \& 16 cannot be used simultaneously.

KE Type (All-Puropose EU)

$\begin{array}{lll}\text { 4. } 3 . & 5 . & \text { 10. 11.12. 13. } 14\end{array}$

6.
7. 8. 9. 17. 18 .

	J Type (Compact)	KE Type (All-Purpose EU)
Feature	Compact size, reasonable price with high performance	Superior in expansion capability
Model	J	KE
Encoder Type	Incremental Absolute	Incremental Absolute
Mximum number of Axes	1 axis	4 axes
Total number of wattage*	800w <400A>	1600w <800w>
1/O expansion	Unavailable	Total of 192 points
Network compliance	Unavailable	Available
Electric disconnect during emergency stop**	Semi-conductor	Relay

External Input and Output (I/O)

Standard X-SEL Controller has 32 inputs and 16 outputs. The All-Purpose EU type can have a maximum of 192 inputs and outputs by adding the expansion I/O cards, (The Compact Type can't be expanded). The I/O card comes in 32 inputs and 16 outputs or 16 inputs and 32 outputs. Select one according to your needs. The first slot must be 32 inputs and 16 outputs.

I/O Signal Switching Function

Assigned function of each I/O port can be changed by the parameters. For example, all inputs and outputs can Ass set to user I/O and exclusive function assigned to each port can be also selected (The standard V/O signal chart of the next page is the standard setting at the time of shipping).

Extemal Input and Output Specification

To use I/O, 24 V DC power source is required. Supply 24 V to pinl and pin 50 of the I/O on J Type. Supply 24 V DC to the I/O power source connecter on the KE Type. Refer to specification and circuit below.

Standard I/O Signal Chart

Pin No.	Section	Port No.	Function
1		-	All-urpose EU:NC; Compact +22 V input
2		000	Program start
3		001	User Input
4		002	User Input
5		003	User Input
6		004	User Input
7		005	User Input
8		006	User Input
9		007	PRG 1 Input
10		${ }^{008}$	PRG 2 Input
11		009	PRG 4 Input
12		010	PRG 8 Input
13		011	PRG 10 Input
14		012	PRG 20 Input
15		013	PRG 40 Input
16		014	User Input
17	Input	015	User Input
18		016	User Input
19		017	User Input
20		018	User Input
21		019	User Input
22		020	User Input
23		${ }^{021}$	User Input
24		022	User Input
25		023	User Input
26		024	User Input
27		025	User Input
28		026	User Input
29		027	User Input
30		028	User Input
${ }^{31}$		029	User Input
32		030	User Input
${ }^{33}$		${ }^{031}$	User Input
34		300	Alam output
${ }^{35}$		301	Ready output
${ }^{36}$		302	Emergency stop output
37		303	User Input
38		304	User Input
39		305	User Input
40		306	User Input
41		307	User Input
42	Output	308	User Input
${ }^{43}$		309	User Input
44		310	User Input
45		311	User Input
46		312	User Input
47		313	User Input
48		314	User Input
49		315	User Input
50		-	Al-Purose Eu:Nc: Compact:ov

Pins No. 1 and 50 are not used in All.Purpose EU tppe.
For compact type, connect t 24 V to Pin No. 1 and OV to Pin No. 50 .

Expansion I/O Signal Chart Expansion I/O Signal Chart

Pin No.	Section	Port ${ }^{\text {a }}$.	Port No. Content
1		\checkmark	nc
2			User Input
3			User Input
4			User Input
5			User Input
6			User Input
7			User Input
8			User Input
9			User Input
10			User Input
11			User Input
12			User Input
13			User Input
14			User Input
15			User Input
16			User Input
17	Input		User Input
18			User Input
19			User Input
20			User Input
21			User Input
22			User Input
23			User Input
24			User Input
25			User Input
26			User Input
27			User Input
28			User Input
29			User Input
30			User Input
31			User Input
32			User Input
33			User Input
34			User Input
35			User Input
36			User Input
37			User Input
38			User Input
39			User Input
40			User Input
${ }_{4}$			User Input
42	ouput		User Input
${ }^{43}$			User Input
44			User Input
45			User Input
46			User Input
47			User Input
48			User Input
49			User Input
50		-	nc

Pin No.	Section Port No.		Port No. Content
1		-	nc
2			User Input
3			User Input
4			User Input
5			User Input
6			User Input
7			User Input
8			User Input
9	Input		User Input
10			User Input
11			User Input
12			User Input
13			User Input
14			User Input
15			User Input
16			User Input
17			User Input
18			User Input
19			User Input
20			User Input
21			User Input
22			User Input
23			User Input
24			User Input
25			User Input
26			User Input
27			User Input
28			User Input
29			User Input
30			User Input
31			User Input
32			User Input
33			User Input
34	wut		User Input
35			User Input
36			User Input
37			User Input
38			User Input
39			User Input
40			User Input
41			User Input
42			User Input
43			User Input
44			User Input
45			User Input
46			User Input
47			User Input
48			User Inp
49			User Input
50		-	nc

Extemal Dimensions

www．actuator．ru тел．：（495）662－87－56，e－mail：iai＠actuator．ru

Cables

Motor and encoder cables are included with the purchase of both actuator and controller together．Controllers include I／O and power cables．For purchasing
cables，refer to the cable types below．

LS Cable（to Actuator）

－ The maximum length is 10 m ex） $080=8 \mathrm{~m}$

Encoder Cable（to Connector Box）

Type CB－XCEU－PA－ロロロ
allis length of cable（L）．
The maximum length is 10 m
ex） $080=8 \mathrm{~m}$

Wiring	Colour	Signal	No．	No．	Sign	Colour	Wiring
0．75s9	Green	PE	1	$\stackrel{\text { ® }}{ }$	PE	Green	0.7559 （crimp）
	Red	U	2	1	U	Red	
	White	v	3	2	v	White	
	Black	w	4	3	w	Black	

－ is length of cable（L）． The maximum length is 10 m ． ex） $080=8 \mathrm{~m}$
Motor Cable Type CB－XEU－MA－पवロ

Type CB－XCEU－LC－ロロロ ㅁㅁㄴ length of cable（ L ）． The maximum length is 10 m ex） $080=8 \mathrm{~m}$

I／O Flat Cable

The maximum length is 10 m ． ex） $080=8 \mathrm{~m}$

The connectors below have connection plugs on the controller's side. Cables need to be wired by the customer.

AC Power Source Input Connecter

This connecter is for AC $100 \mathrm{~V} / 230 \mathrm{~V}$ power source
Cable is not included.)

wiring diagram signal No.

System I/O Connecter

This connecter is for supplying power to the emergency stop, enable, and system ready terminals from the controller to PLC, etc
(Cable is not included.)

Plug : MC1.5/6-ST-3.5 (Phoenix)
wiring diagram

I/O Power Source Connecter

This connecter is for supplying 24 V DC power source when using I/O at the controller (Cable is not included.)

New generation controller

 X-selSome of the new features unique to the X-SEL controller include the following:

- Absolute encoders
- Highspeed multi-tasking
- synchronous drive control

$$
\begin{aligned}
& \text { - Infinite motion } \\
& \text { - Expansive I/0 } \\
& \text { - Network capability }
\end{aligned}
$$

- Push function
- Enhanced safety
- Enhanced Serviceability
www.actuator.ru тел.:(495) 662-87-56, e-mail: iai@actuator.ru

XSEL Series

Catalogue No. 0502-E
Providing quality products since 1986

-65824 Schwalbach am Taunus
Tel.: +49-6196-8895-0
Fax: +49-6196-8895-24
E-Mail: info@IAI-GmbH.de
Internet: http://www.IntelligentActuator.de

IAI America Inc.

2690 W. 237th Street, Torrance, CA 90505
U.S.A

Tel.: +1-310-891-6015 Fax: +1-310-891-0815
Printing in Germany 502

IAI CORPORATION
645-1 Hirose, Shimizu-City, Shizuoka 424-0102
Japan
Tel. +81-543-64-5105 Fax: +81-543-64-5182

[^0]: You can set the palletise points by just teaching 3 points, $A, B \& C$.

[^1]: Total up to 3 boards of $l \mathrm{O}$ and SIO can be expanded when a network board is installed in the
 standard l/O connector slo.

[^2]: * $\square \square \square=$ length of cables. ex) $050=5 \mathrm{~m}$

